• Title/Summary/Keyword: RF induction heating

Search Result 7, Processing Time 0.021 seconds

Improvement of Heating Pattern in RF Hyperthermia -Simultaneous Application of Dielectric Heating and Induction Heating-

  • Sakakibara, Norifumi;Ochiai, Makoto;Hayakawa, Yoshinori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.478-480
    • /
    • 2002
  • Heating by RF wave is divided into dielectric heating and induction heating. Dielectric heating and induction heating from outside the body have the compensatory heating pattern. While surface fat layer is heated by dielectric heating, it is not heated by induction heating. While the peripheral part at the middle of the electrodes is not heated by dielectric heating, it is heated by induction heating. By the simultaneous application both modalities, heating pattern seems to be more uniform and improved. Computer simulation of Finite Element Method (FEM) using ANSYS was conducted to dielectric heating with the results of above-mentioned feature. Theoretical considerations by the uniform RF magnetic field in a cylinder and textbooks support the feature of the above-mentioned heating pattern of induction heating. Further computer simulation of FEM using ANSYS will be conducted to simultaneous application of dielectric heating and induction heating to verify and will be reported.

  • PDF

A study on the growth of rutile single crystal by skull melting method (스컬법에 의한 루틸 단결정 성장에 관한 연구)

  • Seok Jeong-Won;Choi Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.262-266
    • /
    • 2004
  • Rutile single crystals were grown by the skull melting method. Ti metal ring was used for initial RF induction heating. The grown crystals were cut into wafer of 5.5 mm diameter and 1mm thickness. The wafers were annealed in air at $1300^{\circ}C$ up to 15 hours and their transmittance spectra $(\lambda= 200~25000 nm)$ were obtained.

Thermal Nitridation of Si by RF Induction Heating (고주파 유도 가열에 의한 Si의 열적질화)

  • 이용현;왕진석
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1386-1392
    • /
    • 1990
  • Characteristics of the direct thermal nitrided films by RF induction heating has been studied. The nitrided films on Si were prepared at 1000-1200\ulcorner in ammonia gas ambient. The nitrided films were analyzed by ellipsometry an Auger electron spectroscopy. I-V and C-V characteristics of MIS capacitors fabricated using nitrided film were investicated. The nitrided films were grown up mostly within initial thirty minutes and no significant growth was observed thereafter. Etch rates of films were about 1\ulcornermin in diluted HF (HF:H2O= 1:50). The nitrided films were resistant to dry and wet oxidations at temperatures below 1000\ulcorner and 900\ulcorner, respectively.

  • PDF

A study on the growth mechanism of rutile single crystal by skull melting method and conditions of RF generator (스컬용융법에 의한 루틸 단결정 성장메커니즘과 RE generator 조건에 관한 연구)

  • Seok jeong-Won;Choi Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.175-181
    • /
    • 2005
  • Ingots of rutile single crystals were grown by the skull melting method, and their characteristics were compared in terms of melt-dwelling time for each melt. The method is based on direct inductive heating of an electrically conducted melt by an alternating RF field, and the heating is performed by absorption of RF energy. $TiO_2$ is an insulator at room temperature but its electric conductivity increases elevated temperature. Therefore, titanium metal ring(outside diameter : 6cm, inside diameter : 4cm, thickness 0.2cm) was embedded into $TiO_2$, powder (anatase phase, CERAC, 3N) for initial RF induction heating. Important factors of the skull melting method are electric resistivity of materials at their melting point, working frequency of RF generator and cold crucible size. In this study, electric resitivity of $TiO_2$, $(10^{-2}\~10^{-1}\;{\Omega}{\cdot}m)$ at its melting point was estimated by compairing the electric resitivities of alumina and zirconia. Inner diameter and height of the cold crucible was 11 and 14cm, respectively, which were determined by considering of the Penetration depth $(0.36\~1.13cm)$ and the frequency of RF generator.

A study on SiC crystal growth by sublimation process using resistance heating method (저항가열 방식을 적용한 승화법에 의한 SiC 결정 성장에 대한 연구)

  • Kang, Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.3
    • /
    • pp.85-92
    • /
    • 2015
  • SiC crystals are well known for their true potential as high power devices and their crystal growth activity is actively carried out in domestic as well as in abroad. Until now the process to grow this crystal has been done by sublimation technique using radio frequency induction heating method. However in order to get better quality of SiC crystals, the stability of temperature is needed because SiC crystal tends to transform to other polytypes. So, the possibility of SiC crytals growth was evaluated by different heating method. This study aimed to observe whether the resistant heating method would show stable growth and better quality of SiC single crystal than that of RF induction heating. As a result, polycrystalline SiC crystals were grown by the growth rate of 0.02~0.5 mm/hr under the condition of $2100{\sim}2300^{\circ}C$ at the bottom side of the crucible and 10~760 torr. The polycrystalline SiC crystals with 0.25 and 0.5 mm in thickness were grown successfully without seed and characterized by optical stereo microscopic observation.

A study on the crystallinity of AlN single crystals by heat treatment (열처리에 따른 AlN 단결정의 결정성에 관한 연구)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.105-109
    • /
    • 2017
  • AlN single crystal was thermally treated at $1200^{\circ}C$ and $1500^{\circ}C$ in the ambient gas of nitrogen. AlN single crystal was obtained by sublimation growth process using by a facility having a growth part which was heated by RF (Radio Frequency) induction heating. In this report, the optical microscopic results taken from thermally treated AlN single crystal and FWHM (Full width of half maximum) measured by DCXRD (Double crystal X-ray Diffractometry) were reported.

A study on the heat treatment process for AlN single crystals grown by PVT method (PVT 법으로 성장된 AlN 단결정의 열처리 공정에 대한 연구)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.65-69
    • /
    • 2017
  • AlN single crystal was thermally treated at 1600, 1700 and $1800^{\circ}C$ in the ambient pressure of under 100 torr. AlN single crystal was obtained by PVT (Physial Vapor Transport) method using by a facility having a growth part which was heated by RF (Radio Frequency) induction heating. The single crystal specimens surface was evaluated by optical microscope and it was recognized that their morphology was varied with the heat treatment temperature and a set ambient pressure. In this report, the optical microscopic results were reported. According to the increase of temperature the crystal surface was etched thermally. It was evaluated by appearance of small pits on the crystal surface.