• Title/Summary/Keyword: RF Sputtering

Search Result 2,158, Processing Time 0.032 seconds

RF파워 변화에 따라 스퍼터된 GZO 박막의 전기적, 광학적 특성

  • Jeong, Seong-Jin;Kim, Deok-Gyu;Kim, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.86-86
    • /
    • 2011
  • RF magnetron sputtering을 이용하여 RF파워 변화에 따라 GZO 박막을 제작하였다. 박막제작은 유리기판 위에 하였고, 전기적, 광학적 특성을 조사하였다. 박막의 증착시 초기 압력은 $2.0{\times}10^{-6}Torr$, 증착온도는 상온으로 고정하여 증착하였으며, 기판은 Corning 1737 유리 기판을 사용하였다. RF 파워 공정변수는 20W, 50W, 80W, 110W로 변화를 시켰다. 유리기판에 증착된 모든 GZO박막은 200 nm의 두께로 증착되었으며 모든 GZO 박막에서 85% 이상의 투과율을 나타내었다. RF파워가 낮을수록 투과율을 증가하였으며, 광학적 밴드갭 또한 증가하였다. 공정별로 제작된 모든 GZO박막에서 (002)면의 배향성이 관찰되었고, RF파워가 낮을수록 박막의 결정성은 향상되었다. Hall 측정 결과 RF파워가 20W일 때 전기비저항 $1.85{\times}10^{-3}{\Omega}cm$, 전하의 농도 $3.794{\times}10^{20}cm^{-3}$, 이동도 $8.89cm^2V^{-1}s^{-1}$로 전극으로서의 특성을 나타내었다. GZO 박막의 경우 RF 파워가 낮을수록 결정성이 높아지고, 전극의 특성을 갖는 것을 확인할 수 있었다.

  • PDF

Characteristics of Silicon Nitride Deposited Thin Films on IT Glass by RF Magnetron Sputtering Process (RF Magnetron Sputtering공정에 의해 IT유리에 적층시킨 Silicon Nitride 박막의 특성)

  • Son, Jeongil;Kim, Gwangsoo
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.169-175
    • /
    • 2020
  • Silicon nitride thin films are deposited by RF (13.57 MHz) magnetron sputtering process using a Si (99.999 %) target and with different ratios of Ar/N2 sputtering gas mixture. Corning G type glass is used as substrate. The vacuum atmosphere, RF source power, deposit time and temperature of substrate of the sputtering process are maintained consistently at 2 ~ 3 × 10-3 torr, 30 sccm, 100 watt, 20 min. and room temperature, respectively. Cross sectional views and surface morphology of the deposited thin films are observed by field emission scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy. The hardness values are determined by nano-indentation measurement. The thickness of the deposited films is approximately within the range of 88 nm ~ 200 nm. As the amount of N2 gas in the Ar:N2 gas mixture increases, the thickness of the films decreases. AFM observation reveals that film deposited at high Ar:N2 gas ratio and large amount of N2 gas has a very irregular surface morphology, even though it has a low RMS value. The hardness value of the deposited films made with ratio of Ar:N2=9:1 display the highest value. The XPS spectrum indicates that the deposited film is assigned to non-stoichiometric silicon nitride and the transmittance of the glass with deposited SiO2-SixNy thin film is satisfactory at 97 %.

Structural and Optical Properties of CuS Thin Films Grown by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 성장시킨 CuS 박막의 구조적 및 광학적 특성)

  • Shin, Donghyeok;Lee, SangWoon;Son, Chang Sik;Son, Young Guk;Hwang, Donghyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.9-14
    • /
    • 2020
  • CuS (copper sulfide) thin films having the same thickness of 100nm were deposited on the glass substrates using by radio frequency (RF) magnetron sputtering method. RF powers were applied as a process variable for the growth of CuS thin films. The structural and optical properties of CuS thin films deposited under different power conditions (40-100W) were studied. XRD analysis revealed that all CuS thin films had hexagonal crystal structure with the preferential growth of (110) planes. As the sputtering power increased, the relative intensity of the peak with respect to the (110) planes decreased. The peaks of the two bands (264cm-1 and 474cm-1) indicated in the Raman spectrum exactly matched the typical spectral values of the covellite (CuS). The size and shape of the grains constituting the surface of the CuS thin films deposited under the power condition ranging from 40W to 80W hardly changed. However, the spacing between crystal grains tended to increase in proportion to the increase in sputtering power. The maximum transmittance of CuS thin films grown at 40W to 80W ranged from 50 % to 51 % based on 580nm wavelength, and showed a relatively small decrease of 48% at 100W. The band gap energy of the CuS thin films decreased from 2.62eV (at 40W) to 2.56eV (at 100W) as the sputtering power increased.

Microstructure of ZnO:Ga Thin Films by RF magnetron sputtering (RF 스퍼터링법에 의한 ZnO:Ga 박막의 미세구조)

  • Kim, Byung-Sub;Lee, Sung-Wook;Lim, Dong-Gun;Park, Min-Woo;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.477-480
    • /
    • 2004
  • Ga doped zinc oxide films (ZnO:Ga) were deposited on glass substrate by RF magnetron sputtering from a ZnO target mixed with $Ga_O_3$. The effects of RF discharge power on the electrical, optical and structural properties were investigated experimentally. The structural and electrical properties of the film are highly affected by the variation of RF discharge power. The lowest electrical resistivity of $4.9{\times}10^{-4}\;\Omega-cm$ were obtained with the film deposited from 3 wt% of $Ga_2O_3$ doped target and at 200 W in RF discharge power. The transmittance of the 900 nm thin film was 91.7% in the visible waves. The effect of annealing on the as-deposited film was also studied to improve the electrical resistivity of the ZnO:Ga film.

  • PDF

Department of Nano Semiconductor, Korea Maritime University (RF-스퍼터링의 파워변화에 따른 플라스틱 기판 위에 증착된 ZnO박막의 구조적, 광학적 특성)

  • Kim, Jun-Je;Kim, Hong-Seung;Lee, Joo-Young;Lee, Jong-Hoon;Lee, Da-Jung;Lee, Won-Jae;Shan, F.K.;Cho, Chae-Ryong;Kim, Jin-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.214-215
    • /
    • 2008
  • Zinc-oxide(ZnO) films were deposited on PC(polycarboanate) and PES(polyethersulphone) substrates by using RF(radio-frequency)sputter with various rf sputtering Power at a room temperature. The effects of rf sputtering Power on the structural and optical properties of ZnO films were investigated by using atomic force microscopy, X-ray diffraction, and UV spectrophotometer. The most excellent structural and properties of a ZnO film are obtained in the condition of an rf-power of 150 W. This film shows larger Grain size and lower surface roughness and a higher optical transmittance of over 80 % in the visible range than other films deposited in the different conditions of rf- power. Regardless of substrate types, The presence of a strong diffraction peak indicates that films have a (0 0 2) preferred orientation associated with the hexagonal phase.

  • PDF

Dependence of RF power of ($Ba_{0.5}Sr_{0.5})TiO_3$ thin film using RF magnetron sputtering (RF magnetron sputtering을 이용한 ($Ba_{0.5}Sr_{0.5})TiO_3$ 박막의 RF power 의 존성)

  • 최형윤;이태일;정순원;박인철;최동한;김흥배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.51-54
    • /
    • 2000
  • In this paper, $Ba_{0.5}$Sr$_{0.5}$TiO$_3$ thin films were prepared on Pt/Ti/SiO$_2$/Si substrate by RF magnetron sputtering method. We investigated effect of deposition conditions (especially RF input power) on structural properties of BST thin films. Deposit conditions of BST films were set working gas ratio, Ar:O$_2$= 70 : 30, working pressure 10mTorr, and RF input power 25W, 50W, 75W and 100W. Post-annealing using rapid thermal annealing(RTA) performed at 45$0^{\circ}C$, 55$0^{\circ}C$, $650^{\circ}C$, and 75$0^{\circ}C$ in oxigen ambient for 60 sec, respectively. The structural properties of BST films on Pt/Ti/SiO$_2$/Si substrate analysed by X-ray diffraction(XRD).).).

  • PDF

Properties of GZO Thin Films Propared by RF Magnetron Sputtering at low temperature (RF 마그네트론 스퍼터링 법으로 저온 증착한 GZO박막의 특성)

  • Kwon, Soon-Il;Kang, Gyo-Sung;Yang, Kea-Joon;Park, Jea-Hwan;Lim, Dong-Gun;Lim, Seung-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.169-170
    • /
    • 2007
  • In this paper we report upon an investigation into the effect of sputter pressure and RF power on the electrical properties of Gallium doped zinc oxide (GZO) film. GZO films were deposited on glass substrate without substrate temperature by RF magnetron sputtering from a ZnO target mixed with 5 wt% $Ga_2O_3$. Argon gas pressure and RF power were in the range of 1~11 mTorr, and 50~100 W, respectively. However, the resistivity of the film was strongly influenced by the sputter pressure and RF power. We were able to achieve as low as $1.5{\times}10^{-3}\;{\Omega}cm$, without substrate temperature.

  • PDF

Effect of discharge power on the electrical properties of ZnO:Al transparent conducting films by RF magnetron sputtering (RF 마그네트론 스퍼터법에 의한 ZnO:Al 투명전도막 특성에 미치는 방전전력의 영향)

  • Lee, Sung-Wook;Kim, Byung-Sub;Lee, Soo-Ho;Lim, Dong-Gun;Park, Min-Woo;Lee, Se-Jong;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.939-942
    • /
    • 2004
  • Al doped Zinc Oxide(ZnO:Al) films, which is widely used as a transparent conductor in optoelectronic devices such as solar cell, liquid crystal display, plasma display panel, thermal heater, and other sensors were Prepared by using the capacitively coupled RF magnetron sputtering method. In this paper the effect of RF discharge power on the electrical, optical and structural properties were investigated experimentally. The results show that the structural and electrical properties of the film are highly affected by the variation of RF discharge power. The optimum growth conditions were obtained for films doped with 2 wt% of $Al_2O_3$ and 200 W in RF discharge power, which exhibit a resistivity of $10.4{\times}10^{-4}{\Omega}-cm$ associated with a transmittance of 89.66 % for 1000nm in films thickness in the wavelength range of the visible spectrum.

  • PDF

Effect of negative oxygen ion bombardment on the gate bias stability of InGaZnO

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.160-160
    • /
    • 2015
  • InGaZnO (IGZO) thin-film transistors (TFTs) are very promising due to their potential use in high performance display backplane [1]. However, the stability of IGZO TFTs under the various stresses has been issued for the practical IGZO applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of IGZO thin film. In this study, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of IGZO TFTs by this new deposition method.

  • PDF

Preparation and Electrical Properties of $(Ba_{0.5}, Sr_{0.5})Tio_3$Thin Films by RF Magnetron Sputtering (RF Magnetron Sputtering에 의한 $(Ba_{0.5}, Sr_{0.5})Tio_3$박막의 제조와 전기적 특성에 관한 연구)

  • Park, Sang-Sik;Yun, Son-Gil
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.453-458
    • /
    • 1994
  • $(Ba_{0.5}Sr_{0.5)/TiO_3$(BST) thin films were prepared for the application of 256 Mb DRAM by RF magnetron sputtering. The crystallinity of BST thin films increased with increasing deposition tempera lure. The composition of thin films was $(Ba_{0.48}Sr_{0.48)/TiO_{2.93}$ Pt/Ti barrier layer suppressed the diffusion of Si into BST layer. The films showed a dielectric constant of 320 and a dissipation factor of 0.022 at 100 kHz. the change of capacitance of the films with applied voltage was small, showing paraelectric property. The charge storage density and leakage current density were 40fC/$\mu \textrm{m}^{2}$ and 0.8$\mu A/\textrm{cm}^2$, respectively at a field of 0.15 MV/cm. The BST films obtained by RF magnetron sputtering appeared to be potential thin film capacitors for 256 Mb DRAM application.

  • PDF