• Title/Summary/Keyword: RF Sputtering

Search Result 2,158, Processing Time 0.072 seconds

Charaterization of GaN Films Grown on Si(100) by RF Magnetron Sputtering (RF magnetron sputtering 방법에 의해 Si(100) 기판 위에 성장된 GaN 박막의 특성에 대한 연구)

  • 이용일;성웅제;박천일;최우범;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.570-573
    • /
    • 2001
  • In this paper, GaN films have been grown on SiO$_2$/Si(100) substrates by RF magnetron sputtering. To obtain high quality GaN films, we used ZnO buffer layer and modified the process conditions. The charateristics of GaN films on RF power, substrate temperature and Ar/N$_2$gas ratio have been investigated by Auger electron spectroscopy and X-ray diffraction analysis. At RF power 150W, substrate temperature 500 $^{\circ}C$ and Ar/N$_2$=1:2 gas ratio, we could grow high quality GaN films. Through the atomic force microscope and photoluminescence analysises, it was observed that the crystallization of GaN films was improved with increasing annealing temperature and the optimal crystallization of GaN films was found at 1100 $^{\circ}C$ annealing temperature.

  • PDF

The Transparent Semiconductor Characteristics of ZnO Thin Films Fabricated by the RF Magnetron Sputtering Method (RF magnetron sputtering법으로 형성된 ZnO 박막의 투명반도체 특성)

  • Kim, Jong-Wook;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 2010
  • Recently, the growth of ZnO thin film on glass substrate has been investigated extensively for transparent thin film transistor. We have studied the phase transition of ZnO thin films from metal to semiconductor by changing RF power in the deposition process by RF magnetron sputtering system. The structural, electric, and optical properties of the ZnO thin films were investigated. The film deposited with 75 watt of RF power showed n-type semiconductor characteristic having suitable resistivity $-3.56\;{\times}\;10^{+1}\;{\Omega}cm$, carrier concentration $-2.8\;{\times}\;10^{17}\;cm^{-3}$, and mobility $-0.613\;cm^2V^{-1}s^{-1}$ while other films by 25, 50, 100 watt of RF power closed to metallic films. From the surface analysis (AFM), the number of crystal grain of ZnO thin film increased as RF power increased. The transmittance of the film was over 88% in the visible region regardless of the change in RF power.

A Study of Thin Film deposition using of RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 박막 증착에 관한 연구)

  • Lee, Woo Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.772-777
    • /
    • 2018
  • This paper used RF Magnetron Sputtering to deposition n-type and p-type to ITO glass. The N-type ohmic contact worked well under all conditions. Sheet resistance has been shown to increase sheet resistance as RF Power increases. After analyzing the surface of the deposited thin film, in the condition that RF Power was 250W and substrate temperature was $250^{\circ}C$, particles were measured to have a uniform and consistent thin film. P-type has good ohmic contact under all conditions and sheet resistance has been shown to increase as RF Power increases. As the RF Power grew, thickness increased and stabilized. PN junction thin film and NP junction thin film showed increased thickness and stabilized as sputtering time increased. As a result of thin film, conversion efficiency was at 0.2 when sputtering time was 10 minutes.

광반응 폴리이미드위에 RF bias sputtering 방식으로 증착된 Cr의 접착력에 관한 연구

  • 김선영;김영호;윤종승
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.171-177
    • /
    • 2001
  • The adhesion enhancement from inserting a RF bias-sputtered Cr layer between Cu and polyimide (PI) has been studied. The RF bias power applied in this study was ranged from 0 to 400 W. Without the RF bias, the peel strength, which measures the adhesion strength, was nearly o g/mm. As the RF power was increased, the peel strength rose up to ~130 g/mm at 200 W, which remained constant with further increase of the RF bias power. Cross-sectional transmission electron microscopy(TEM) was used to investigate the interfacial reaction between the Cr film and PI substrate during the bias sputtering. The Cr/PI interface without the application of RF dais showed a clean, sharp interface while the RF raised Cr/PI interface had about 10~30 nm thick atomistically mixed interlayer between the metal film and PI substrate. This interlayer appeared to have resulted from the implantation of high energy adatoms during the RF bias sputtering of Cr film. This mixed layer serves as an interlocking layer, which enhances adhesion between the metal and PI layers.

  • PDF

Properties of ZnO:Ga thin films deposited by RF magnetron sputtering under various RF power

  • Kim, Deok Kyu;Kim, Hong Bae
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.242-244
    • /
    • 2015
  • ZnO:Ga thin films were deposited by RF magnetron sputtering technique from ZnO (3 wt.% $Ga_2O_3$) target onto glass substrates under various RF power. The influence of RF power on the structural, electrical, and optical properties of ZnO:Ga thin films was investigated by X-ray diffraction, atomic force microscopy, Hall method and optical transmission spectroscopy. As the RF power increases from 50 to 110W, the crystallinity is deteriorated, the root main square surface roughness is decreased and the sheet resistance is increased. The increase of sheet resistance is caused by decreasing carrier concentration due to interstitial Ga ion. All films are transparent up to 80% in the visible wavelength range and the adsorption edge is a red-shift with increasing RF power.

Preparation of TiO2 Nanotube Arrays from Thin Film Grown by RF Sputtering

  • Kim, Chang Woo
    • Applied Science and Convergence Technology
    • /
    • v.27 no.5
    • /
    • pp.105-108
    • /
    • 2018
  • Transparent $TiO_2$ nanotube arrays are successfully prepared by a two-step approach involving electrochemical anodization and RF magnetron sputtering. First, a Ti film is deposited on an FTO substrate by RF magnetron sputtering at room temperature. The morphologies of the Ti film are controlled by the working distance, Ar flow, and DC power. Second, an anodization treatment is electrochemically performed for the formation of nanotube arrays from the deposited Ti film, followed by post-annealing treatment in air for the formation of $TiO_2$ crystallization. The back side of the crystallized $TiO_2$ nanotube arrays is illuminated with solar light to characterize the photoelectrochemical reaction, and their photoelectrochemical properties are investigated. This work provides information on application of a thin film deposited by RF sputtering in the field of photoelectrochemical water splitting.

Characteristics of Sputtering Carbon Films for the Improvement of Physical Properties in Carbon Fiber (탄소섬유 물리적 특성 향상을 위한 스퍼터링 탄소박막의 특성에 대한 연구)

  • Park, Chulmin;Park, Yong Seob;Kim, Jae-Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.694-697
    • /
    • 2015
  • We investigated the characterizations of carbon films fabricated by dual magnetron sputtering under various RF powers for the improvement of physical properties in carbon fiber (CF). All sputtered carbon films exhibited amorphous structure, regardless of RF powers, resulting in uniform and smooth surfaces. The hardness and elastic modulus are increased with the increase of RF power, and the adhesion and friction properties of carbon films were improved with the increase of RF power. In the results, The increase of RF power in the sputtering method improved tribological properties of the carbon films, and these attributes can be expected to improve the physical properties of the carbon fiber reinforcement plastics.

ZnO film growth on sapphire substrate by RF magnetron sputtering (RF 스퍼터링 법에 의한 사파이어 기판상의 ZnO 박막의 성장)

  • Kang Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.215-219
    • /
    • 2004
  • ZnO epitaxial films have been grown on a (0001)sapphire substrate by RF magnetron sputtering. The single crystalline ZnO films were grown at the condition of growth rate of about 0.1~0.2 $\mu\textrm{m}$/hr and the substrate temperature of $600^{\circ}C$. The film thickness was about 400~500 nm. The thin film quality and micro-structure have been evaluated by XRD and TEM observation.

Anti-reflection Coating of Silicon Nitride Film for Solar Cell by RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 태양전지용 질화 실리콘 반사방지막)

  • Choi, Kyoon;Choi, Eui-Seok;Hwang, Jin-Ha;Lee, Soo-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.585-588
    • /
    • 2007
  • Silicon nitride films for an anti-reflection coating were deposited on silicon via RF magnetron sputtering using a $Si_3N4$ target. The best result was obtained at the sputtering condition of 340 W RF power, 5 mtorr Ar atmosphere, $100^{\circ}C$ substrate temperature. The films showed 7.9% reflectance minimum with 2.35 refractive index. 0.21 absorption coefficient at 66.6 nm thickness. The surface morphology showed a smooth and dense film with good adhesion to silicon surface.

The properties of copper films deposited by RF magnetron sputtering (RF 마그네트론 스퍼터링법에 의해 증착된 구리막의 특성)

  • 송재성;오영우
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.727-732
    • /
    • 1996
  • In the present paper, the Cu films 4.mu.m thick were deposited by RF magnetron sputtering method on Si wafer. The Cu films deposited at a condition of 100W, 10mtorr exhibited a low electrical resistivity of 2.3.mu..ohm..cm and densed microstructure, poor adhesion. The Cu films grown by 200W, 20mtorr showed a good adhesion property and higher electrical resistivity of 7.mu..ohm..cm because of porous columnar microstructure. Therefore, The Cu films were deposited by double layer deposition method using RF magnetron sputtering on Si wafer. The dependence of the electrical resistivity, adhesion, and reflectance in the CU films [C $U_{4-d}$(low resistivity) / C $U_{d}$(high adhesion) / Si-wafer] on the thickness of d has been investigated. The films formed with this deposition methods had the low electrical resistivity of about 2.6.mu..ohm..cm and high adhesion of about 700g/cm.m.m.

  • PDF