• 제목/요약/키워드: RF MEMS packaging

검색결과 20건 처리시간 0.027초

Package-Platformed Linear/Circular Polarization Reconfigurable Antenna Using an Integrated Silicon RF MEMS Switch

  • Hyeon, Ik-Jae;Jung, Tony J.;Lim, Sung-Joon;Baek, Chang-Wook
    • ETRI Journal
    • /
    • 제33권5호
    • /
    • pp.802-805
    • /
    • 2011
  • This letter presents a K-band polarization reconfigurable antenna integrated with a silicon radio frequency MEMS switch into the form of a compact package. The proposed antenna can change its state from linear polarization (LP) to circular polarization (CP) by actuating the MEMS switch, which controls the configuration of the coupling ring slot. Low-loss quartz is used for a radiating patch substrate and at the same time for a packaging lid by stacking it onto the MEMS substrate, which can increase the system integrity. The fabricated antenna shows broadband impedance matching and exhibits high axial ratios better than 15 dB in the LP and small axial ratios in the CP, with a minimum value of 0.002 dB at 20.8 GHz in the K-band.

비전도성 에폭시를 사용한 RF-MEMS 소자의 웨이퍼 레벨 밀봉 실장 특성 (Wafer Level Hermetic Sealing Characteristics of RF-MEMS Devices using Non-Conductive Epoxy)

  • 박윤권;이덕중;박흥우;송인상;김정우;송기무;이윤희;김철주;주병권
    • 마이크로전자및패키징학회지
    • /
    • 제8권4호
    • /
    • pp.11-15
    • /
    • 2001
  • 본 연구에서는 RF-MEMS소자의 웨이퍼레벨 패키징에 적용하기 위한 밀봉 실장 방법에 대하여 연구를 하였다. 비전도성 B-stage에폭시를 사용하여 밀봉 실장하는 방법은 플립칩 접합 방법과 함께 MEMS 소자 패키징에 많은 장점을 줄 것이다. 특히 소자의 동작뿐만 아니라 기생성분의 양을 줄여야 하는 RF-MEMS 소자에는 더욱더 많은 장전을 보여준다. 비전도성 B-stage 에폭시는 2차 경화가 가능한 것으로 우수한 밀봉 실장 특성을 보였다. 패키징시 상부기관으로 사용되는 유리기판 위에 500 $\mu\textrm{m}$의 밀봉선을 스크린 프린팅 방식으로 패턴닝을 한 후에 $90^{\circ}C$$170^{\circ}C$에서 열처리를 하였다. 2차 경화 후 패턴닝된 모양이 패키징 공정이 끝날 때까지 계속 유지가 되었다. 패턴닝 후 에폭시 놀이가 4인치 웨이퍼에서 $\pm$0.6$\mu\textrm{m}$의 균일성을 얻었으며, 접합강토는 20 MPa을 얻었다. 또한 밀봉실장 특성을 나타내는 leak rate는 $10^{-7}$ cc/sec를 얻었다.

  • PDF

Low Actuation Voltage Capacitive Shunt RF-MEMS Switch Using a Corrugated Bridge with HRS MEMS Package

  • Song Yo-Tak;Lee Hai-Young;Esashi Masayoshi
    • Journal of electromagnetic engineering and science
    • /
    • 제6권2호
    • /
    • pp.135-145
    • /
    • 2006
  • This paper presents the theory, design, fabrication and characterization of the novel low actuation voltage capacitive shunt RF-MEMS switch using a corrugated membrane with HRS MEMS packaging. Analytical analyses and experimental results have been carried out to derive algebraic expressions for the mechanical actuation mechanics of corrugated membrane for a low residual stress. It is shown that the residual stress of both types of corrugated and flat membranes can be modeled with the help of a mechanics theory. The residual stress in corrugated membranes is calculated using a geometrical model and is confirmed by finite element method(FEM) analysis and experimental results. The corrugated electrostatic actuated bridge is suspended over a concave structure of CPW, with sputtered nickel(Ni) as the structural material for the bridge and gold for CPW line, fabricated on high-resistivity silicon(HRS) substrate. The corrugated switch on concave structure requires lower actuation voltage than the flat switch on planar structure in various thickness bridges. The residual stress is very low by corrugating both ends of the bridge on concave structure. The residual stress of the bridge material and structure is critical to lower the actuation voltage. The Self-alignment HRS MEMS package of the RF-MEMS switch with a $15{\Omega}{\cdot}cm$ lightly-doped Si chip carrier also shows no parasitic leakage resonances and is verified as an effective packaging solution for the low cost and high performance coplanar MMICs.

비전도성 에폭시를 사용한 RF-MEMS 소자의 웨이퍼 레벨 밀봉 실장 특성

  • 박윤권;이덕중;박흥우;송인상;박정호;김철주;주병권
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.129-133
    • /
    • 2001
  • In this paper, hermetic sealing was studied fur wafer level packaging of the MEMS devices. With the flip-chip bonding method, this B-stage epoxy sealing will be profit to MEMS device sealing and further more RF-MEMS device sealing. B-stage epoxy can be cured 2-step and hermetic sealing can be obtained. After defining $500{\mu}{\textrm}{m}$-width seal-lines on the glass cap substrate by screen printing, it was pre-baked at $90^{\circ}C$ for about 30 minutes. It was then aligned and bonded with device substrate followed by post-baked at $175^{\circ}C$ for about 30 minutes. By using this 2-step baking characteristic, the width and the height of the seal-line were maintained during the sealing process. The height of the seal-line was controlled within $\pm0.6${\mu}{\textrm}{m}$ and the strength was measured to about 20MPa by pull test. The leak rate of the epoxy was about $10^7$ cc/sec from the leak test.

  • PDF

RF MEMS 소자 실장을 위한 LTCC 및 금/주석 공융 접합 기술 기반의 실장 방법 (LTCC-based Packaging Method using Au/Sn Eutectic Bonding for RF MEMS Applications)

  • 방용승;김종만;김용성;김정무;권기환;문창렬;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.30-32
    • /
    • 2005
  • This paper reports on an LTCC-based packaging method using Au/Sn eutectic bonding process for RF MEMS applications. The proposed packaging structure was realized by a micromachining technology. An LTCC substrate consists of metal filled vertical via feedthroughs for electrical interconnection and Au/Sn sealing rim for eutectic bonding. The LTCC capping substrate and the glass bottom substrate were aligned and bonded together by a flip-chip bonding technology. From now on, shear strength and He leak rate will be measured then the fabricated package will be compared with the LTCC package using BCB adhesive bonding method which has been researched in our previous work.

  • PDF

RF MEMS 스위치 적용을 위한 밀봉성 패키지의 특성 연구 (Characteristic study of hermetic package for RF MEMS switch)

  • 방용승;김종만;김용성;김정무;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1464-1465
    • /
    • 2008
  • In this paper, we compared the mechanical characteristics between LTCC-based RF MEMS packaging structures fabricated using two different types of bonding materials; BCB and gold-tin. The BCB-based packages showed an average shear strength of 32.1 MPa and helium leak rate of $1.76{\times}10^{-8}atm{\cdot}cc/sec$ for a cavity volume of $0.45\times10^{-3}cc$, while the packages bonded by gold-tin layer (80 wt.% gold, 20 wt.% tin) showed an average shear strength of 42.70 MPa and helium leak rate $1.38{\times}10^{-8}atm{\cdot}cc/sec$ for a cavity volume of $1.21{\times}10^{-3}cc$.

  • PDF

Design and Fabrication of a Low-cost Wafer-level Packaging for RF Devices

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Choi, Hyun-Jin;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권2호
    • /
    • pp.91-95
    • /
    • 2014
  • This paper presents the structure and process technology of simple and low-cost wafer-level packaging (WLP) for thin film radio frequency (RF) devices. Low-cost practical micromachining processes were proposed as an alternative to high-cost processes, such as silicon deep reactive ion etching (DRIE) or electro-plating, in order to reduce the fabrication cost. Gold (Au)/Tin (Sn) alloy was utilized as the solder material for bonding and hermetic sealing. The small size fabricated WLP of $1.04{\times}1.04{\times}0.4mm^3$ had an average shear strength of 10.425 $kg/mm^2$, and the leakage rate of all chips was lower than $1.2{\times}10^{-5}$ atm.cc/sec. These results met Military Standards 883F (MIL-STD-883F). As the newly proposed WLP structure is simple, and its process technology is inexpensive, the fabricated WLP is a good candidate for thin film type RF devices.

차세대 이동통신시스템에 적용을 위한 저전압구동의 RFMEMS 스위치 (Lour Voltage Operated RFMEMS Switch for Advanced Mobile System Applications)

  • 서혜경;박재영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2395-2397
    • /
    • 2005
  • A low voltage operated piezoelectric RF MEMS in-line switch has been realized by using silicon bulk micromachining technologies for advanced mobile/wireless applications. The developed RF MEMS in-line switches were comprised of four piezoelectric cantilever actuators with an Au contact metal electrode and a suspended Au signal transmission line above the silicon substrate. The measured operation dc bias voltages were ranged from 2.5 to 4 volts by varying the thickness and the length of the piezoelectric cantilever actuators, which are well agreed with the simulation results. The measured isolation and insertion loss of the switch with series configuration were -43dB and -0.21dB (including parasitic effects of the silicon substrate) at a frequency of 2GHz and an actuation voltage of 3 volts.

  • PDF

SOI(Silicon-On-Insulator)- Micromachining 기술을 이용한 MEMS 소자의 제작 (Fabrication of MEMS Devices Using SOI(Silicon-On-Insulator)-Micromachining Technology)

  • 주병권;하주환;서상원;최승우;최우범
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.874-877
    • /
    • 2001
  • SOI(Silicon-On-Insulator) technology is proposed as an alternative to bulk silicon for MEMS(Micro Electro Mechanical System) manufacturing. In this paper, we fabricated the SOI wafer with uniform active layer thickness by silicon direct bonding and mechanical polishing processes. Specially-designed electrostatic bonding system is introduced which is available for vacuum packaging and silicon-glass wafer bonding for SOG(Silicon On Glass) wafer. We demonstrated thermopile sensor and RF resonator using the SOI wafer, which has the merits of simple process and uniform membrane fabrication.

  • PDF

유리 기판과 패인 홈 모양의 홀을 갖는 웨이퍼를 이용한 웨이퍼 레벨 패키지 (Wafer Level Package Using Glass Cap and Wafer with Groove-Shaped Via)

  • 이주호;박해석;신제식;권종오;신광재;송인상;이상훈
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2217-2220
    • /
    • 2007
  • In this paper, we propose a new wafer level package (WLP) for the RF MEMS applications. The Film Bulk Acoustic Resonator (FBAR) are fabricated and hermetically packaged in a new wafer level packaging process. With the use of Au-Sn eutectic bonding method, we bonded glass cap and FBAR device wafer which has groove-shaped via formed in the backside. The device wafer includes a electrical bonding pad and groove-shaped via for connecting to the external bonding pad on the device wafer backside and a peripheral pad placed around the perimeter of the device for bonding the glass wafer and device wafer. The glass cap prevents the device from being exposed and ensures excellent mechanical and environmental protection. The frequency characteristics show that the change of bandwidth and frequency shift before and after bonding is less than 0.5 MHz. Two packaged devices, Tx and Rx filters, are attached to a printed circuit board, wire bonded, and encapsulated in plastic to form the duplexer. We have designed and built a low-cost, high performance, duplexer based on the FBARs and presented the results of performance and reliability test.