• Title/Summary/Keyword: RF Communication

Search Result 1,355, Processing Time 0.027 seconds

Enhancement of Magneto-Optical Kerr Effect in Annealed Granular Films of Co-Au and $Co-AlO_x$

  • Abe, Masanori;Takeda, Eishi;Kitamoto, Yoshitaka;Shirasaki, Fumio;Todoroki, Norikazu;Gorodetzky, Gad;Ohnuma, Shigehiro;Masumoto, Tasuku;Inoue, Mitsuteru
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.100-102
    • /
    • 2000
  • Co fine particles were dispersed in Au metal and $AlO_x$ amorphous matrices by vacuum evaporation and rf-sputtering, respectively, thus forming granular composite films having chemical compositions of $Co_{0.59}-Au_{0.41}$ and $Co_{0.52}/(AlO_x$)_{0.48}$. The films were annealed at 200~$500^{\circ}C$ to increase the size of the Co particles, from 30$\AA$ to 180$\AA$ in the Au matrix and 40$\AA$ to 180$\AA$ in the $AlO_x$ matrix, as revealed by X-ray diffraction analysis. The Co metal in as-deposited films have saturation magnetization equivalent to that of bulk Co, which is unchanged by the annealing, showing that the Co metal is not oxidized by the annealing. Magneto-optical Kerr rotation measured at $\lambda$=400-900nm for the $Co_{0.59}-Au_{0.41}$ film as deposited is larger than that calculated for the composition. The rotation increases as the film is annealed at $200^{\circ}C$ and $300^{\circ}C$, approaching to that of bulk Co. The Kerr rotation for the $Co_{0.52}-(AlO_x)_{0.48}$ film as deposited is smaller than that calculated for the composition based on Bruggeman effective medium theory. However, the rotation increases much, exceeding the rotation of the bulk Co as annealed at $300^{\circ}C$ and $400^{\circ}C$. As a possible origin of the marked magneto-optical enhancement a weak localization of light in granular structure is suggested.

  • PDF

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

Bioelectrical Impedance Analysis of Multi-frequency using Portable Small Impedance Measuring System (휴대용 소형임피던스 측정시스템을 이용한 다중주파수의 생체임피던스 해석)

  • Kim, Min Soo;Cho, Young Chang
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.2
    • /
    • pp.121-126
    • /
    • 2017
  • In this study, we measured the bioelectrical impedance of whole body in various frequency bands by non-invasive method by four electrode method using a portable small impedance measurement system developed to understand the bioimpedance characteristics of intracellular fluid and extracellular fluid components through a skin equivalent model. The measurements were performed on 10 male subjects (mean age $24{\pm}3.0$, body mass index(BMI) $20.3kg/m^2$) for four weeks and the bioimpedances were measured at multi-frequencies (1 kHz, 5 kHz, 50 kHz, 70 kHz, 100 kHz and 500 kHz). Experimental results show that the impedance is the highest in the low frequency range of 1 kHz and the lowest in the high frequency range of 500 MHz. Especially, it was confirmed through experiments that the impedance is rapidly lowered above 50 kHz band. In addition, it was confirmed that similar characteristics to the measured values of the bioimpedance measuring system were obtained in the simulations for understanding the impedance characteristics of the intracellular fluid and the extracellular fluid through the skin equivalent circuit model.

A Study on Real-Time Sports Activity Classification & Monitoring Using a Tri-axial Accelerometer (가속도 센서를 이용한 실시간 스포츠 동작 분류.모니터링에 관한 연구)

  • Kang, Dong-Won;Choi, Jin-Seung;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.59-64
    • /
    • 2008
  • D. W. KANG, J. S. CHOI, and G. R. TACK, A Study on Real-Time Sports Activity Classification & Monitoring Using a Tri-axial Accelerometer. Korean Jouranl of Sport Biomechanics, Vol. 18, No. 2, pp. 59-64, 2008. This study was conducted to study the real-time sports activity classification and monitoring using single waist mounted tri-axial accelerometer. This monitoring system detects events of sports activities such as walking, running, cycling, transitions between movements, resting and emergency event of falls. Accelerometer module was developed small and easily attachable on waist using wireless communication system which does not constrain sports activities. The sensor signal was transferred to PC and each movement pattern was classified using the developed algorithm in real-time environment. To evaluate proposed algorithm, experiment was performed with several sports activities such as walking, running, cycling movement for 100sec each and falls, transition movements(sit to stand, lie to stand, stand to sit, lie to sit, stand to lie and sit to lie) for 20 times each with 5 healthy subjects. The results showed that successful detection rate of the system for all activities was 95.4%. In this study, through sports activity monitoring. it was possible to classify accurate sports activities and to notify emergency event such as falls. For further study, the accurate energy consumption algorithm for each sports activity is under development.

Design of a Band-Stop Filter for UWB Application (UWB용 대역 저지 필터 설계)

  • Roh Yang-Woon;Hong Seok-Jin;Chung Kyung-Ho;Jung Ji-Hak;Choi Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.89-94
    • /
    • 2006
  • A compact microstrip band-selective filter for ultra-wideband(UWB) radio system is proposed. The filter combines the traditional short-circuited stub highpass filter and coupled resonator band-stop filter on both sides of the mitered 50-ohm microstrip line. To realize the pseudo-highpass filtering characteristic over UWB frequency band(3.1 GHz to 10.6 GHz), a distributed highpass filter scheme is adopted. Three coupled resonators are utilized to obtain the band stop function at the desired frequency band. By meandering the coupled resonators, there is $29\;\%$ size reduction in footprint compared to the traditional band-stop filter using L-shaped resonators. The measured results show that the filter has a wide passband of $146.7\;\%$(2.1 GHz to 10.15 GHz) with low insertion loss and the stop band of $10.04\;\%$(5.2 GHz to 5.75 GHz) for 3-dB bandwidth. The measured group delay is less than 0.7 ns within the passband except the rejection band.

A Canonical Piecewise-Linear Model-Based Digital Predistorter for Power Amplifier Linearization (전력 증폭기의 선형화를 위한 Canonical Piecewise-Linear 모델 기반의 디지털 사전왜곡기)

  • Seo, Man-Jung;Shim, Hee-Sung;Im, Sung-Bin;Hong, Seung-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.9-17
    • /
    • 2010
  • Recently, there has been much interest in orthogonal frequency division multiplexing (OFDM) for next generation wireless wideband communication systems. OFDM is a special case of multicarrier transmission, where a single data stream is transmitted over a number of lower-rate subcarriers. One of the main reasons to use OFDM is to increase robustness against frequency-selective fading or narrowband interference. However, in the radio systems it is also important to distortion introduced by high power amplifiers (HPA's) such as solid state power amplifier (SSPA) considered in this paper. Since the signal amplitude of the OFDM system is Rayleigh-distributed, the performance of the OFDM system is significantly degraded by the nonlinearity of the HPA in the OFDM transmitter. In this paper, we propose a canonical piecewise-linear (PWL) model based digital predistorter to prevent signal distortion and spectral re-growth due to the high peak-to-average power ratio (PAPR) of OFDM signal and the nonlinearity of HPA's. Computer simulation on an OFDM system under additive white Gaussian noise (AWGN) channels with QPSK, 16-QAM and 64-QAM modulation schemes and modulator/demodulator implemented with 1024-point FFT/IFFT, demonstrate that the proposed predistorter achieves significant performance improvement by effectively compensating for the nonlinearity introduced by the SSPA.

Side-Wall 공정을 이용한 WNx Self-Align Gate MESFET의 제작 및 특성

  • 문재경;김해천;곽명현;임종원;이재진
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.162-162
    • /
    • 1999
  • 초고주파 집적회로의 핵심소자로 각광을 받고 있는 GaAs MESFET(MEtal-emiconductor)은 게이트 형성 공정이 가장 중요하며, WNx 내화금속을 이용한 planar 게이트 구조의 경우 임계전압(Vth:threshold voltage)의 균일도가 우수할 뿐만 아니라 특히 Side-wall을 이용한 self-align 게이트는 소오스 저항을 줄일 수 있어 고성능의 소자 제작을 가능하게 한다.(1) 본 연구의 핵심이 되는 Side-wall을 형성하기 위하여 PECVD법에 의한 SiOx 박막을 증착하고, 건식식각법을 이용하여 SiOx side-wall을 형성하였다. 이 공정을 이용하여 소오스 저항이 낮고 임계전압의 균일도가 우수한 고성능의 self-aligned gate MESFET을 제작하였다. 3inch GaAs 기판상에 이온주입법에 의한 채널 형성, d.c. 스퍼터링법에 의한 WNx 증착, PECVD법에 의한 SiOx 증착, MERIE(Magnetic Enhanced Reactive Ion Etcing)에 의한 Side-wall 형성, LDD(Lightly Doped Drain)와 N+ 이온주입, 그리고 RTA(Rapid Thermal Annealing)를 사용하여 활성화 공정을 수행하였다. 채널은 40keV, 4312/cm2로, LDD는 50keV, 8e12/cm2로 이온주입하였고, 4000A의 SiOx를 증착한 후 2500A의 Side-wall을 형성하였다. 옴익 접촉은 AuGe/Ni/Au 합금을 이용하였고, 소자의 최종 Passivation은 SiNx 박막을 이용하였다. 제작된 소자의 전기적 특성은 hp4145B parameter analyzer를 이용한 전압-전류 측정을 통하여 평가하였다. Side-wall 형성은 0.3$\mu\textrm{m}$ 이상의 패턴크기에서 수직으로 잘 형성되었고, 본 연궁에서는 게이트 길이가 0.5$\mu\textrm{m}$인 MESFET을 제작하였다. d.c. 특성 측정 결과 Vds=2.0V에서 임계전압은 -0.78V, 트랜스컨덕턴스는 354mS/mm, 그리고 포화전류는 171mA/mm로 평가되었다. 특히 본 연구에서 개발된 트랜지스터의 게이트 전압 변화에 따른 균일한 트랜스 컨덕턴스의 특성은 RF 소자로 사용할 때 마이크로 웨이브의 왜곡특성을 없애주기 때문에 균일한 신호의 전달을 가능하게 한다. 0.5$\mu\textrm{m}$$\times$100$\mu\textrm{m}$ 게이트 MESFET을 이용한 S-parameter 측정과 Curve fitting 으로부터 차단주파수 fT는 40GHz 이상으로 평가되었고, 특히 균일한 트랜스컨덕턴스의 경향과 함께 차단주파수 역시 게이트 바이어스, 즉 소오스-드레스인 전류의 변화에 따라 균일한 값을 보였다. 본 연구에서 개발된 Side-wall 공정은 게이트 길이가 0.3$\mu\textrm{m}$까지 작은 경우에도 사용가능하며, WNx self-align gate MEESFET은 낮은 소오스저항, 균일한 임계전압 특성, 그리고 높고 균일한 트랜스 컨덕턴스 특성으로 HHP(Hend-Held Phone) 및 PCS(Personal communication System)와 같은 이동 통신용 단말기의 MMICs(Monolithic Microwave Integrates Circuits)의 제작에 활용될 것으로 기대된다.

  • PDF

Electrical Characteristics of Copper Circuit using Inkjet Printing (잉크젯 프린팅 방식으로 형성된 구리 배선의 전기적 특성 평가)

  • Kim, Kwang-Seok;Koo, Ja-Myeong;Joung, Jae-Woo;Kim, Byung-Sung;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.43-49
    • /
    • 2010
  • Direct printing technology is an attractive metallization method, which has become immerging as "Green technology" to the conventional photolithography, on account of low cost, simple process and environment-friendliness. In order to commercialize the printed electronics in industry, it is essential to evaluate the electrical properties of conductive circuits using direct printing technology. In this contribution, we focused on the electrical characteristics of inkjet-printed circuits. A Cu nanoink was inkjet-printed onto a Bisaleimide triazine(BT) substrate with parallel transmission line(PTL) and coplanar waveguide(CPW) type, then was sintered at $250^{\circ}C$ for 30 min. We calculated the resistivity of printed circuits through direct current resistance by the measurement of I-V curve: the resistivity was approximately 0.558 ${\mu}{\Omega}{\cdot}cm$ which is about 3.3 times that of bulk Cu. Cascade's probe system in the frequency range from 0 to 30 GHz were employed to measure the Scattering parameter(S-parameter) with or without a gap between the substrate and the probe station chuck. The result of measured S-parameter showed that all printed circuits had over 5 dB of return loss in the entire frequency range. In the curve of insertion loss, $S_{21}$, showed that the PTL type circuits had better transmission of radio frequency (RF) than CPW type.

Design, Implementation and Test of Flight Model of S-Band Transmitter for STSAT-3 (과학기술위성 3호 S-대역 송신기 비행모델 설계, 제작 및 시험)

  • Oh, Seung-Han;Seo, Gyu-Jae;Lee, Jung-Soo;Oh, Chi-Wook;Park, Hong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.553-558
    • /
    • 2011
  • This paper describes the development and test result of S-band Transmitter flight model(FM) of STSAT-3 by satellite research center(SaTReC), KAIST. The communication sub-system of STSAT-3 is consist of two different frequency band channels, S-band for Telemetry & Command and X-band for mission data. S-band Transmitter(STX) functionally made of modulator, frequency synthesizer, power amp and DC/DC converter. The transmission data is modulated by FSK(Frequency Shift Keying) and the interface between spacecraft sub-module and STX is RS-422 standard method. The FM STX is based on modular design. The RF output power of STX is 1.5W(31.7dBm) and BER of STX is under $1{\times}10^{-5}$ which meets the specification respectively. The FM STX is delivered Spacecraft Assembly, Integration and Test(AIT) level through the completion of functional Test and environmental(vibration, thermal vacuum) Test successfully.

A Study on Fabrication and Performance Evaluation of Wideband 2-Mode HPA for the Satellite Mobile Communications System (이동위성 통신용 광대역 2단 전력제어 HPA의 구현 및 성능평가에 관한 연구)

  • 전중성;김동일;배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.517-531
    • /
    • 1999
  • This paper presents the development of the 2-mode variable gain high power amplifier for a transmitter of INMARSAT-M operating at L-band(1626.5-1646.5 MHz). This SSPA(Solid State Power Amplifier) is amplified 42 dBm in high power mode and 36 dBm in low power mode for INMARSAT-M. The allowable error sets +1 dBm of an upper limit and -2 dBm of a lower limit, respectively. To simplify the fabrication process, the whole system is designed by two parts composed of a driving amplifier and a high power amplifier, The HP's MGA-64135 and Motorola's MRF-6401 are used for driving amplifier, and the ERICSSON's PTE-10114 and PTF-10021 are used the high power amplifier. The SSPA was fabricated by the circuits of RF, temperature compensation and 2-mode gain control circuit in aluminum housing. The gain control method was proposed by controlling the voltage for the 2-mode. In addition, It has been experimentally verified that the gain is controlled for single tone signal as well as two tone signals. The realized SSPA has 42 dB and 36 dB for small signal gain within 20 MHz bandwidth, and the VSWR of input and output port is less than 1.5:1 The minimum value of the 1 dB compression point gets 5 dBm for 2-mode variable gain high power amplifier. A typical two tone intermodulation point has 32.5 dBc maximum which is single carrier backed off 3 dB from 1 dB compression point. The maximum output power of 43 dBm was achieved at the 1636.5 MHz. These results reveal a high power of 20 Watt, which was the design target.the design target.

  • PDF