• Title/Summary/Keyword: RF C-V

Search Result 575, Processing Time 0.038 seconds

산소유량 변화에 의한 산소 과포화된 HfOx 박막의 고온 열처리에 따른 Nanomechanics 특성 연구

  • Park, Myeong-Jun;Lee, Si-Hong;Kim, Su-In;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.389-389
    • /
    • 2013
  • HfOx (Hafnium oxide)는 ~25의 고유전상수, 5.25 eV의 비교적 높은 Band-gap을 갖는 물질로 MOSFET (metal-oxide semiconductor field-effect-transistor) 구조의 Oxide 박막을 대체 가능한 물질로 연구가 지속되고 있다. 현재까지 진행된 대다수의 연구는 증착 조건에 따른 박막의 결정학적 및 전기적 특성에 대한 주제로 진행되었고 다양한 연구 결과가 보고된바 있다. 하지만 기존의 연구 기법은 박막의 nanomechanics 특성에 대한 연구가 부족하여 이를 보완하기 위한 연구가 절실하다. 따라서 본 연구에서는 HfOx 박막 내 포함된 산소가 고온 열처리 과정에서 빠져나감으로 인한 박막의 nanomechanics 특성을 확인하고자 하였다. 시료는 rf magnetron sputter를 이용하여Si (silicon) 기판위에 Hafnium target으로 산소유량(5, 10, 15 sccm)을 달리하여 증착하였고, 이후 furnace에서 $400^{\circ}C$에서 $1,000^{\circ}C$까지 질소분위기에서 20분간 열처리를 실시하였다. 실험결과 시료의 전기적 특성을 I-V 곡선을 측정하여 확인하였고, 증착 시 산소 유량이 5 sccm에서 15 sccm으로 증가함에 따라서 누설전류 특성은 급격히 향상되었고, 열처리 온도가 증가함에 따라 감소하는 특성을 나타내었다. 또한 시료의 nanomechanics 특성을 확인하기 위하여 nano-indenter를 이용하여 시료의 표면강도(surface hardness)와 탄성계수(elastic modulus)를 확인하였다. 측정결과 5 sccm 시료의 표면강도와 탄성계수는 상온에서 열처리 온도가 증가함에 따라 각각 7.75 GPa에서 9.19 GPa로, 그리고 133.83 GPa에서 126.64 GPa로 10, 15 sccm의 박막의 비하여 상대적으로 균일한 특성을 나타내었다. 이는 증착 시 박막 내 과포화된 산소가 열처리 과정에서 빠져나감으로 인한 것이며, 또한 과포화된 정도에 따라 더 적은 열처리 에너지에 의하여 박막을 빠져나감으로 인한 것으로 판단된다. 또한 열처리 과정에서 산소가 빠져나가는 상대적인 flux의 영향으로 인하여 박막의 mechanical한 균일도의 변화가 나타났다.

  • PDF

Structural, Morphological, and Optical Properties of AlN Thin Films Subjected to Oxygen Flow Ratio (산소 유량비 변화에 따른 AlN 박막의 구조, 표면 및 광학적 특성)

  • Cho, Shin-Ho;Kim, Moon-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.287-292
    • /
    • 2010
  • We have investigated the effects of oxygen flow ratios on the structural, morphological, and optical properties of AlN thin films grown by using radio-frequency reactive magnetron sputtering. The AlN thin films were deposited at $300^{\circ}C$ of substrate temperature, and the reactive gas were supplied with both nitrogen and oxygen. The oxygen flow ratio was varied by controlling the amount of oxygen with respect to the total mixed gases, 0%, 10%, 15%, 20%, 25%, and 30%. The structural, morphological, and optical properties of the deposited AlN thin films were examined by using X-ray diffractometer, scanning electron microscopy, and ultraviolet-visible spectrophotometer. The AlN thin film grown at 10% of oxygen flow ratio indicated an average transmittance of 91.3% in the wavelength range of 350~1,100 nm and an optical band gap of 4.30 eV. The experimental results suggest that AlN thin films can be deposited optionally by varying the oxygen flow ratio.

Characteristics of Cu-Doped Ge8Sb2Te11 Thin Films for PRAM (PRAM용 Cu-도핑된 Ge8Sb2Te11 박막의 특성)

  • Kim, Yeong-Mi;Kong, Heon;Kim, Byung-Cheul;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.376-381
    • /
    • 2019
  • In this work, we evaluated the structural, electrical and optical properties of $Ge_8Sb_2Te_{11}$ and Cu-doped $Ge_8Sb_2Te_{11}$ thin films prepared by rf-magnetron reactive sputtering. The 200-nm-thick deposited films were annealed in a range of $100{\sim}400^{\circ}C$ using a furnace in an $N_2$ atmosphere. The amorphous-to-crystalline phase changes of the thin films were investigated by X-ray diffraction (XRD), UV-Vis-IR spectrophotometry, a 4-point probe, and a source meter. A one-step phase transformation from amorphous to face-centered-cubic (fcc) and an increase of the crystallization temperature ($T_c$) was observed in the Cu-doped film, which indicates an enhanced thermal stability in the amorphous state. The difference in the optical energy band gap ($E_{op}$) between the amorphous and crystalline phases was relatively large, approximately 0.38~0.41 eV, which is beneficial for reducing the noise in the memory devices. The sheet resistance($R_s$) of the amorphous phase in the Cu-doped film was about 1.5 orders larger than that in undoped film. A large $R_s$ in the amorphous phase will reduce the programming current in the memory device. An increase of threshold voltage ($V_{th}$) was seen in the Cu-doped film, which implied a high thermal efficiency. This suggests that the Cu-doped $Ge_8Sb_2Te_{11}$ thin film is a good candidate for PRAM.

Microfabrication of Submicron-size Hole on the Silicon Substrate using ICP etching

  • Lee, J.W.;Kim, J.W.;Jung, M.Y.;Kim, D.W.;Park, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.79-79
    • /
    • 1999
  • The varous techniques for fabrication of si or metal tip as a field emission electron source have been reported due to great potential capabilities of flat panel display application. In this report, 240nm thermal oxide was initially grown at the p-type (100) (5-25 ohm-cm) 4 inch Si wafer and 310nm Si3N4 thin layer was deposited using low pressure chemical vapor deposition technique(LPCVD). The 2 micron size dot array was photolithographically patterned. The KOH anisotropic etching of the silicon substrate was utilized to provide V-groove formation. After formation of the V-groove shape, dry oxidation at 100$0^{\circ}C$ for 600 minutes was followed. In this procedure, the orientation dependent oxide growth was performed to have a etch-mask for dry etching. The thicknesses of the grown oxides on the (111) surface and on the (100) etch stop surface were found to be ~330nm and ~90nm, respectively. The reactive ion etching by 100 watt, 9 mtorr, 40 sccm Cl2 feed gas using inductively coupled plasma (ICP) system was performed in order to etch ~90nm SiO layer on the bottom of the etch stop and to etch the Si layer on the bottom. The 300 watt RF power was connected to the substrate in order to supply ~(-500)eV. The negative ion energy would enhance the directional anisotropic etching of the Cl2 RIE. After etching, remaining thickness of the oxide on the (111) was measured to be ~130nm by scanning electron microscopy.

  • PDF

Electrical Properties of the Amorphous BaTi4O9 Thin Films for Metal-Insulator-Metal Capacitors (Metal-Insulator-Metal 캐패시터의 응용을 위한 비정질 BaTi4O9 박막의 전기적 특성)

  • Hong, Kyoung-Pyo;Jeong, Young-Hun;Nahm, Sahn;Lee, Hwack-Joo
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.574-579
    • /
    • 2007
  • Amorphous $BaTi_4O_9$ ($BT_4$) film was deposited on Pt/Si substrate by RF magnetron sputter and their dielectric properties and electrical properties are investigated. A cross sectional SEM image and AFM image of the surface of the amorphous $BT_4$ film deposited at room temperature showed the film was grown well on the substrate. The amorphous $BT_4$ film had a large dielectric constant of 32, which is similar to that of the crystalline $BT_4$ film. The leakage current density of the $BT_4$ film was low and a Poole-Frenkel emission was suggested as the leakage current mechanism. A positive quadratic voltage coefficient of capacitance (VCC) was obtained for the $BT_4$ film with a thickness of <70 nm and it could be due to the free carrier relaxation. However, a negative quadratic VCC was obtained for the films with a thickness ${\geq}96nm$, possibly due to the dipolar relaxation. The 55 nm-thick $BT_4$ film had a high capacitance density of $5.1fF/{\mu}m^2$ with a low leakage current density of $11.6nA/cm^2$ at 2 V. Its quadratic and linear VCCs were $244ppm/V^2$ and -52 ppm/V, respectively, with a low temperature coefficient of capacitance of $961ppm/^{\circ}C$ at 100 kHz. These results confirmed the potential suitability of the amorphous $BT_4$ film for use as a high performance metal-insulator-metal (MIM) capacitor.

Study of Pulse Generator used Inverter HV Power Supply (XFEL를 위한 기존의 펄스전원공급장치 개선 연구)

  • Park, S.S.;Kim, S.H.;Kim, S.C.;Hwang, J.Y.;Han, Y.J.;Chio, J.H.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2146-2148
    • /
    • 2005
  • The 2.5GeV linac of the Pohang Light Source(PLS) is planed to be converted to a XFEL. The PAL XFEL requires a new 1.2-GeV linac that will be combined to the existing linac to increase a beam energy upto 3.7GeV. This stability is mainly determined by a low level RF drive system and klystron-modulators. The stability level of the modulator has to be improved 10 times better to meet the pulse stability of 0.02 %. The regulation methods such as traditional de-Qing and precision inverter charging technology are reviewed to find out suitable upgrade scheme of the modulators. In order to obtain electron beam of the consequently stability for XFEL linac, the pulse-to-pulse beam voltage regulation is less than +/-0.5%. To get the reliable stability of the modulator which is less than +/-0.2%, a charging section is improved in a modulator which has been operated with inverter power supply and de-Q'ing.

  • PDF

Recent Status of Commercial PET Cyclotron and KOTRON-13 (KOTRON-13과 상용 PET 사이클로트론의 최근 기술 동향)

  • Chai, Jong-Seo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This paper is described on the development of KOTRON-13 and recent status of PET cyclotron by commercial cyclotron companies. KIRAMS has developed medical cyclotron which is KIRAMS-13. Samyoung Unitech produces KOTRON-13 with transfered technology by KIRAMS. As a part of Regional Cyclotron Installation Protect, KOTRON-13 cyclotrons and $[18F]FDG$ production modules are being installed at regional cyclotron centers in Korea. The medical concern with radiation technology has been growing for the last several years. Early cancer diagnosis through the cyclotron and PET-CT have been brought to public attention by commercial cyclotron models in the world. The new commercial cyclotron models are introduced compact low energy cyclotrons developed by CTI, GE, Sumitomo in recent. It produces different short-lived radioisotopes, such as $[^{18}F],\;[^{11}C],\;[^{13}N]\;and\;[^{15}O]$. For the better reliability acceleration particle is proton only. The characteristics of new model cyclotrons are changed to lower energy corresponding to less 13 MeV. New models have self-shielding and low power consumption. Design criteria for the different types of commercial cyclotrons are described with reference to hospital demands.

A Novel Analysis Of Amorphous/Crystalline Silicon Heterojunction Solar Cells Using Spectroscopic Ellipsometer (Spectroscopic Ellipsometer를 이용한 a-Si:H/c-Si 이종접합 태양전지 박막 분석)

  • Ji, Kwang-Sun;Eo, Young-Ju;Kim, Bum-Sung;Lee, Heon-Min;Lee, Don-Hee
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.68-73
    • /
    • 2008
  • It is very important that constitution of good hetero-junction interface with a high quality amorphous silicon thin films on very cleaned c-Si wafer for making high efficiency hetero-junction solar cells. For achieving the high efficiency solar cells, the inspection and management of c-Si wafer surface conditions are essential subjects. In this experiment, we analyzed the c-Si wafer surface very sensitively using Spectroscopic Ellipsometer for < ${\varepsilon}2$ > and u-PCD for effective carrier life time, so we accomplished < ${\varepsilon}2$ > value 43.02 at 4.25eV by optimizing the cleaning process which is representative of c-Si wafer surface conditions very well. We carried out that the deposition of high quality hydrogenated silicon amorphous thin films by RF-PECVD systems having high density and low crystallinity which are results of effective medium approximation modeling and fitting using spectroscopic ellipsometer. We reached the cell efficiency 12.67% and 14.30% on flat and textured CZ c-Si wafer each under AM1.5G irradiation, adopting the optimized cleaning and deposition conditions that we made. As a result, we confirmed that spectroscopic ellipsometry is very useful analyzing methode for hetero-junction solar cells which need to very thin and high quality multi layer structure.

  • PDF

유도 결합 플라즈마를 이용한 ITO박막의 특성 연구

  • Wi, Jae-Hyeong;U, Jong-Chang;Eom, Du-Seung;Yang, Seol;Ju, Yeong-Hui;Park, Jeong-Su;Heo, Gyeong-Mu;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.209-209
    • /
    • 2009
  • ITO 박막은 박막 태양전지, 유기 태양전지뿐만 아니라 유연한 디스플레이, 발광다이오드와 같은 광학적 장치에 투명한 전극으로써 널리 사용된다. 글라스나 플라스틱 기판위에 형성된 투명 전극은 식각을 통하여 전기회로를 구성한다. 또한 식각 특성을 개선할 필요가 있다. 이 연구에서 우리는 유리 기판위에 코팅된 ITO 박막을 유도결합 $BCl_3/Ar$ 플라즈마를 이용하여 식각하였다. ITO 박막은 RF 마그네트론 스퍼터링을 사용해 200 $^{\circ}C$에서 비알칼리 글라스 위에 증착하였고 ITO 박막의 총 두께는 약 250 nm 이었다. 또한 전기 전도성은 $4.483{\times}10^{-4}{\Omega}cm$, 캐리어 농도는 $3.923{\times}10^{20}cm^{-3}$이고, 홀 이동도는 $3.545{\times}10cm^{-2}/Vs$이었다. Ar 플라즈마에 $BCl_3$ 가스를 첨가시키면서 가스 비율에 따른 ITO의 식각 속도와 ITO와 PR과의 선택비를 측정하였다. 최대 식각 속도는 $BCl_3$(25%)/Ar(75%), 500 W의 RF power, -200 V의 DC-bias voltage, 그리고 2 pa의 공정압력일 때 588 nm/min이었고 선택비는 0.43으로 다소 낮게 측정되었다. 식각된 표면의 화학적 반응은 엑스선 광전자 분광법 (X-ray Photoelectron Spectroscopy)을 사용해 조사되었다. 그리고 식각된 표면의 거칠기는 원자현미경 (Atomic Force Microscopy)을 사용해 측정하였다.

  • PDF

Transparent Capacitor of the $Bi_2Mg_{2/3}Nb_{4/3}O_7$(BMNO)-Bi Nanostructured Thin Films grown at Room Temperature

  • Song, Hyeon-A;Na, Sin-Hye;Jeong, Hyeon-Jun;Yun, Sun-Gil
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.20.2-20.2
    • /
    • 2011
  • BMNO dielectric materials with a pyrochlore structure have been chosen and they have quite high dielectric constants about 210 for the bulk material. In the case of thin films, 200-nm-thick BMNO films deposited at room temperature showed a low leakage current density of about $10^{-8}\;A/cm^2$ at 3 V and a dielectric constant of about 45 at 100 kHz. Because high dielectric constant BMNO thin films kept an amorphous phase at a high temperature above $900^{\circ}C$. High dielectric constant BMNO thin films grown at room temperature have many applications for flexible electronic devices. However, because the dielectric constant of the BMNO films deposited at room temperature is still low, percolative BMNO films (i.e., those were grown in a pure argon atmosphere) sandwiched between ultra-thin BMNO films grown in an oxygen and argon mixture have greater dielectric constants than standard BMNO films. However, they still showed a leakage problem at a high voltage application. Accordingly, a new nano-structure that uses BMNO was required to construct the films with a dielectric constant higher than that of its bulk material. The fundamental reason that the BMNO-Bi nano-composite films grown by RF-Sputtering deposition had a dielectric constant higher than that of the bulk material was addressed in the present study. Also we used the graphene as bottom electrode instead of the Cu bottom electrode. At first, we got the high leakage current density value relatively. but through this experiment, we could get improved leakage current density value.

  • PDF