• 제목/요약/키워드: RF 특성

검색결과 3,127건 처리시간 0.037초

MIM 구조를 갖는 Al2O3/HfO2/Al2O3 캐패시터의 정합특성 분석 (Analysis of Matching Characteristics of MIM Capacitors with Al2O3/HfO2/Al2O3)

  • 장재형;권혁민;정의정;곽호영;권성규;이환희;고성용;이원묵;이성재;이희덕
    • 한국전기전자재료학회논문지
    • /
    • 제25권1호
    • /
    • pp.1-5
    • /
    • 2012
  • In this paper, matching characteristic of MIM (metal-insulator-metal) capacitor with $Al_2O_3/HfO_2/Al_2O_3$ (AHA) structure is analyzed. The floating gate capacitance measurement technique (FGMT) was used for analysis of matching characteristic of the MIM capacitors in depth. It was shown that matching coefficient of AHA MIM capacitor is 0.331%${\mu}m$ which is appropriate for application to analog/RF integrated circuits. It was also shown that the matching coefficient has a more strong dependence on the width than length of MIM capacitor.

Ca Cell의 보호막으로 증착된 (SiO2)1-x(ZnO)x 무기 혼합 박막들의 투습 특성 (Permeability of (SiO2)1-x(ZnO)x Inorganic Composite Thin Films Deposited as a Passivation Layer of Ca Cell)

  • 김화민;류성원;손선영
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.262-268
    • /
    • 2009
  • We investigated the properties of inorganic diatomic films like silicon oxide ($SiO_2$) and zinc oxide (ZnO) and their composite films are packed as a passivation layer around Ca cells on glass substrates by using an electron-beam evaporation technique and rf-magnetron sputtering method. When these Ca cells are exposed to an ambient atmosphere, the water vapor penetrating through the passivation layers is adsorbed in the Ca cells, resulting in a gradual progress of transparency in the Ca cells, which can be represented by changes of the optical transmittance in the visible range. Compared with the saturation times for the Ca cells to become completely transparent in the atmosphere, the protection effects against permeation of water vapor are estimated for various passivation films. The thin composite films consist of$SiO_2$ and ZnO are found to show a superior protection effect from water vapor permeation compared with diatomic inorganic films like $SiO_2$ and ZnO. Also, this inorganic thin composite films are also found that their protection effect against permeation of water vapor can be significantly enhanced by choosing their suitable composition ratio and deposition method, in addition, the main factors affecting the permeation of water vapor through the oxide films are found to be the polarizability and the packing density.

직렬 피드백 기법을 이용한 저잡음 증폭기의 구현에 관한 연구 (A Study on the Fabrication of the Low Noise Amplifier Using a Series Feedback Method)

  • 김동일;유치환;전중성;정세모
    • 한국항해학회지
    • /
    • 제25권1호
    • /
    • pp.53-60
    • /
    • 2001
  • 본 논문에서는 IMT-2000 수신주파수인 2.13~2.16 GHz 대역에서 초고주파용 수신장치로 사용되는 저잡음증폭기를 ㅈㄱ렬 피드백 기법과 저항결합회로를 이용하여 구현하였다. GaAs FET(Field Effect Transistor)의 소스단에 부가한 직렬 피드백은 저잡음증폭기의 저잡음특성과 입력반사계수가 작아졌으며, 또 저잡음증폭기의 안정도도 개선되었다. 저항결합회로는 반사되는 전력이 정합 회로내의 저항에서 소모되므로 입력단정합이 용이하였다. 저잡음증폭기의 저잡음증폭단은 GaAs FET인 ATF-10136, 고득증폭단은 내부정합된 MMIC인 VNA-25를 사용하였으며, 알루미늄 기구물 안에 유전율 3.5인테프론 기판에 초고주파회로와 자기바이어스 회로를 함께 장착시켰다. 이렇게 제작된 저잡음증폭기는 30 dB이상의 이득, 0.7dB 이하의 잡음지수, 17 dB의 Pldb, 1.5 이하의 입출력 정재파비를 얻었다.

  • PDF

연속 방출광 스펙트럼을 이용한 대기압 플라즈마의 전자온도 및 전자밀도 측정

  • 박상후;최원호;문세연;박재영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.243.2-243.2
    • /
    • 2014
  • 기존의 저압 플라즈마에 비해 여러 장점을 가지는 중간압력 플라즈마 및 대기압 플라즈마는 수년전부터 많은 관심을 받고 있으며 다양한 응용분야에서 활발히 이용되고 있다. 기초과학으로서의 플라즈마 측면뿐만 아니라 플라즈마 응용의 결과들은 플라즈마의 특성에 따라 좌우되므로 플라즈마 진단 역시 최근 플라즈마 연구에 중요한 부분을 차지하고 있다. 일반적으로 플라즈마 내의 모든 화학적 반응 및 물리적 반응에 있어 전자가 결정적인 역할을 하기 때문에 플라즈마 내의 전자의 정보를 대표하는 지표인 전자온도($n_e$) 및 전자밀도($T_e$)의 측정이 중요하다. 본 연구에서는 대기압 플라즈마에서 중성원자와 전자의 상호작용에 의한 연속 방출광을 자외선-가시광 영역에서 측정하고, 이를 기반으로 $n_e$$T_e$를 측정하였다. 높은 압력에서 불완전 전리된 플라즈마는 이온화율이 낮고 중성원자의 밀도가 이온밀도보다 훨씬 높기 때문에 중성 제동복사(Neutral bremsstrahlung)의 방사도를 이용한 ne 및 Te의 측정이 가능하다. 특히 아르곤 대기압 플라즈마에서 측정된 연속 방출광 스펙트럼의 자외선 영역(280~450 nm)에서는 중성 제동복사에 의한 연속 방출광뿐만 아니라 수소분자에 의한 dissociative 연속 방출광이 함께 존재하는 것이 확인되어 최종적으로 두 연속 방출광을 고려하여 정확한 ne 및 Te를 측정할 수 있었다. 대기압 아르곤 축전결합방전에서 입력전력에 따라 전자온도는 2.5 eV로 유지되었으며, 전자밀도는 $(0.7-1.1){\times}10^{12}cm^{-3}$ 범위에서 $j_d{\propto}n_e{\propto}P_{rf}$ 관계를 따르며 변화하는 것이 관찰되었다.

  • PDF

산화아연 나노구조 박막의 일산화탄소 가스 감지 특성 (CO Gas Sensing Characteristics of Nanostructured ZnO Thin Films)

  • 웬래훙;김효진;김도진
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.235-240
    • /
    • 2010
  • We investigated the carbon monoxide (CO) gas-sensing properties of nanostructured Al-doped zinc oxide thin films deposited on self-assembled Au nanodots (ZnO/Au thin films). The Al-doped ZnO thin film was deposited onto the structure by rf sputtering, resulting in a gas-sensing element comprising a ZnO-based active layer with an embedded Pt/Ti electrode covered by the self-assembled Au nanodots. Prior to the growth of the active ZnO layer, the Au nanodots were formed via annealing a thin Au layer with a thickness of 2 nm at a moderate temperature of $500^{\circ}C$. It was found that the ZnO/Au nanostructured thin film gas sensors showed a high maximum sensitivity to CO gas at $250^{\circ}C$ and a low CO detection limit of 5 ppm in dry air. Furthermore, the ZnO/Au thin film CO gas sensors exhibited fast response and recovery behaviors. The observed excellent CO gas-sensing properties of the nanostructured ZnO/Au thin films can be ascribed to the Au nanodots, acting as both a nucleation layer for the formation of the ZnO nanostructure and a catalyst in the CO surface reaction. These results suggest that the ZnO thin films deposited on self-assembled Au nanodots are promising for practical high-performance CO gas sensors.

자장 구조 변화에 따른 High Power Impulse Magnetron Sputtering (HIPIMS)에서 Al-doped ZnO 박막 증착 특성 (Magnetic Field Dependent Characteristics of Al-doped ZnO by High Power Impulse Magnetron Sputtering (HIPIMS))

  • 박동희;양정도;최지원;손영진;최원국
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.629-635
    • /
    • 2010
  • Abstract In this study characteristics of Al-doped ZnO thin film by HIPIMS (High power impulse sputtering) are discussed. Deposition speed of HIPIMS with conventional balanced magnetic field is measured at about 3 nm/min, which is 30% of that of conventional RF sputtering process with the same working pressure. To generate additional magnetic flux and increase sputtering speed, electromagnetic coil is mounted at the back side of target. Under unbalanced magnetic flux from electromagnet with 1.5A coil current, deposition speed of AZO thin film is increased from 3 nm/min to 4.4 nm/min. This new value originates from the decline of particles near target surface due to the local magnetic flux going toward substrate from electromagnet. AZO film sputtered by HIPIMS process shows very smooth and dense film surface for which surface roughness is measured from 0.4 nm to 1 nm. There are no voids or defects in morphology of AZO films with varying of magnetic field. When coil current is increased from 0A to 1A, transmittance of AZO thin film decreases from 80% to 77%. Specific resistance is measured at about $2.9{\times}10-2\Omega{\cdot}cm$. AZO film shows C-axis oriented structure and its grain size is calculated at about 5.3 nm, which is lower than grain size in conventional sputtering.

고감도 ZnO 박막센서의 수소가스 검출 특성 연구 (Characterization of Hydrogen Gas Sensitivity of ZnO Thin Films)

  • 공영민;이학민;허성보;김선광;유용주;김대일
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.636-639
    • /
    • 2010
  • ZnO thin films were prepared on a glass substrate by radio frequency (RF) magnetron sputtering without intentional substrate heating and then surfaces of the ZnO films were irradiated with intense electrons in vacuum condition to investigate the effect of electron bombardment on crystallization, surface roughness, morphology and hydrogen gas sensitivity. In XRD pattern, as deposited ZnO films show a higher ZnO (002) peak intensity. However, the peak intensity for ZnO (002) is decreased with increase of electron bombarding energy. Atomic force microscope images show that surface morphology is also dependent on electron bombarding energy. The surface roughness increases due to intense electron bombardment as high as 2.7 nm. The observed optical transmittance means that the films irradiated with intense electron beams at 900 eV show lower transmittance than the others due to their rough surfaces. In addition, ZnO films irradiated by the electron beam at 900 eV show higher hydrogen gas sensitivity than the films that were electron beam irradiated at 450 eV. From XRD pattern and atomic force microscope observations, it is supposed that intense electron bombardment promotes a rough surface due to the intense bombardments and increased gas sensitivity of ZnO films for hydrogen gas. These results suggest that ZnO films irradiated with intense electron beams are promising for practical high performance hydrogen gas sensors.

Metal-Insulator-Metal 캐패시터의 응용을 위한 비정질 BaTi4O9 박막의 전기적 특성 (Electrical Properties of the Amorphous BaTi4O9 Thin Films for Metal-Insulator-Metal Capacitors)

  • 홍경표;정영훈;남산;이확주
    • 한국재료학회지
    • /
    • 제17권11호
    • /
    • pp.574-579
    • /
    • 2007
  • Amorphous $BaTi_4O_9$ ($BT_4$) film was deposited on Pt/Si substrate by RF magnetron sputter and their dielectric properties and electrical properties are investigated. A cross sectional SEM image and AFM image of the surface of the amorphous $BT_4$ film deposited at room temperature showed the film was grown well on the substrate. The amorphous $BT_4$ film had a large dielectric constant of 32, which is similar to that of the crystalline $BT_4$ film. The leakage current density of the $BT_4$ film was low and a Poole-Frenkel emission was suggested as the leakage current mechanism. A positive quadratic voltage coefficient of capacitance (VCC) was obtained for the $BT_4$ film with a thickness of <70 nm and it could be due to the free carrier relaxation. However, a negative quadratic VCC was obtained for the films with a thickness ${\geq}96nm$, possibly due to the dipolar relaxation. The 55 nm-thick $BT_4$ film had a high capacitance density of $5.1fF/{\mu}m^2$ with a low leakage current density of $11.6nA/cm^2$ at 2 V. Its quadratic and linear VCCs were $244ppm/V^2$ and -52 ppm/V, respectively, with a low temperature coefficient of capacitance of $961ppm/^{\circ}C$ at 100 kHz. These results confirmed the potential suitability of the amorphous $BT_4$ film for use as a high performance metal-insulator-metal (MIM) capacitor.

혼합기체 sputtering 법으로 증착된 Cu 확산방지막으로의 Ti-Si-N 박막의 특성 연구 (A Study of Reactively Sputtered Ti-Si-N Diffusion Barrier for Cu Metallization)

  • 박상기;이재갑
    • 한국재료학회지
    • /
    • 제9권5호
    • /
    • pp.503-508
    • /
    • 1999
  • We have investigated the physical and diffusion barrier property of Ti-Si-N film for Cu metallization. The ternary compound was deposited by using reactive rf magnetron sputtering of a TiSi$_2$target in an Ar/$N_2$gas mixture. Resistivities of the films were in range of 358$\mu$$\Omega$-cm, to 307941$\mu$$\Omega$-cm, and tended to increase with increasing the $N_2$/Ar flow rate ratio. The crystallization of the Ti-Si-N compound started to occur at 100$0^{\circ}C$ with the phases of TiN and Si$_3$N$_4$identified by using XRD(X-ray Diffractometer). The degree of the crystallization was influenced by the $N_2$/Ar flow ratio. The diffusion barrier property of Ti-Si-N film for Cu metallization was determined by AES, XRD and etch pit by secco etching, revealing the failure temperature of 90$0^{\circ}C$ in 43~45at% of nitrogen content. In addition, the very thin compound (10nm) with 43~45at% nitrogen content remained stable up to $700^{\circ}C$. Furthermore, thermal treatment in vacuum at $600^{\circ}C$ improved the barrier property of the Ti-Si-N film deposited at the $N_2$(Ar+$N_2$) ratio of 0.05. The addition of Ti interlayer between Ti-Si-N films caused the drastic decrease of the resistivity with slight degradation of diffusion barrier properties of the compound.

  • PDF

$Ar/Cl_{2}/CF_{4}$ 고밀도 플라즈마를 이용한 강유전체 $YMnO_3$의 건식식각 특성연구 (Dry Etch Characteristic of Ferroelectric $YMnO_3$ Thin Films Using High Density $Ar/Cl_{2}CF_{4}\;PAr/Cl_{2}/CF_{4}$ 고밀도lasma)

  • 박재화;김창일;장의구;이철인;이병기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.213-216
    • /
    • 2001
  • Etching behaviors of ferroelectric $YMnO_3$ thin films were studied by an inductively coupled plasma (ICP). Etch characteristic on ferroelectric $YMnO_3$ thin film have been investigated in terms of etch rate, selectivity and etch profile. The maximum etch rate of $YMnO_3$ thin film is $300{\AA}/min$ at $Ar/Cl_2$ of 2/8, RF power of 800W, dc bias voltage of 200V, chamber pressure of 15mTorr and substrate temperature of $30^{\circ}C$. Addition of $CF_4$ gas decrease the etch rate of $YMnO_3$ thin film. From the results of XPS analysis, YFx compounds were found on the surface of $YMnO_3$ thin film which is etched in $Ar/Cl/CF_{4}$ plasma. The etch profile of $YMnO_3$ film is improved by addition of $CF_4$ gas into the $Ar/Cl_2$ plasma. These results suggest that fluoride yttrium acts as a sidewall passivants which reduce the sticking coefficient of chlorine on $YMnO_3$.

  • PDF