• Title/Summary/Keyword: RELATIVE ANGLE

Search Result 798, Processing Time 1.326 seconds

부착강도에 대한 이형철근의 마디형상 영향 (Rib Effect of Deformation on Bond Strength)

  • 박영수;양승열;김병국;홍기섭;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.209-212
    • /
    • 2006
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. The effects of defomation properties on bond of reinforcing bars to concrete are studied. Beam-end tests are used to investigate the effects of machining of bars in addition to rib angle and relative rib area. The test results show that bond strength of machined bars were higher than the conventional bars produced in factory. Higher rib height bars with rib angle $30^{\circ}{\sim}60^{\circ}$ showed higher bond strength than lower rib height bars with low angle.

  • PDF

OPTIMAL IMPACT ANGLE CONSTRAINED GUIDANCE WITH THE SEEKER'S LOCK-ON CONDITION

  • PARK, BONG-GYUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권3호
    • /
    • pp.289-303
    • /
    • 2015
  • In this paper, an optimal guidance law with terminal angle constraint considering the seeker's lock-on condition, in which the target is located within the field-of-view (FOV) and detection range limits at the end of the midcourse phase, is proposed. The optimal solution is obtained by solving an optimal control problem minimizing the energy cost function weighted by a power of range-to-go subject to the terminal constraints, which can shape the guidance commands and the missile trajectories adjusting guidance gains of the weighting function. The proposed guidance law can be applied to both of the midcourse and terminal phases by setting the desired relative range and look angle to the final interception conditions. The performance of the proposed guidance law is analyzed through nonlinear simulations for various engagement conditions.

UAV 자동 편대비행을 위한 디지털 빔포밍 및 ToA 기반의 상대위치 추정 시스템 (A Relative Position Estimation System using Digital Beam Forming and ToA for Automatic Formation Flight of UAV)

  • 김재완;윤준용;주양익
    • 한국멀티미디어학회논문지
    • /
    • 제17권9호
    • /
    • pp.1092-1097
    • /
    • 2014
  • It is difficult to perform automatic formation flight of UAV (Unmanned Aerial vehicle) when GPS (Global Positionig System) is out of order or has a system error, since the relative position estimation in the flight group is impossible in that case. In this paper, we design a relative localization system for the automatic formation flight of UAV. For this purpose, we adopt digital beam forming (DBF) to estimate the angle with the central controller of the flight group and Particle Filtering scheme to compensate the estimation error of ToA (time of arrival) method. Computer simulation results present a proper distance between the central controller and a following unit to maintain the automatic formation flight.

국내외 이형철근의 마디 형태 및 부착강도 비교 (Evaluation of Rib Geometries of Reinforcing Bars Available in Korea, Japan and USA)

  • 서동민;김기성;봉원용;양승열;홍기섭;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.278-281
    • /
    • 2006
  • The aims of this study are to investigate rib geometries of reinforcing bars commercially available in Korea, Japan and USA, and evaluate bond performance using beam-end test specimens. Measurement of rib geometries of the bars include nominal area, average distance of rib, height of rib and an angle of rib perpendicular to bar axis. The result of this study show that rib height of Korean reinforcement bars are much less than those of Japan and USA resulting in the lowest value of relative rib area. Average bond strength of Korean D25 deformed bars is known as 9 % less than that of bars produced in USA. Bond strength depends primarily on the relative rib area. Bond strength of the high relative rib area bars produced in USA show 18% higher than that of bars produced in Korea.

  • PDF

대형직접전단시험에 의한 RAP 복합지반의 전단강도 특성 연구 (A Study on the Shear Strength Characteristics of Composited Ground applying RAP Method by Large Direct Shear Test)

  • 천병식;서덕동;김종산
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.82-89
    • /
    • 2004
  • To secure stability and availability of Rammed Aggregate Pier method as the foundation of a structure, the shear strength characteristics according to the area replacement ratio of RAP and the relative density of in-situ ground was studied through soil laboratory tests and large direct shear tests in a model ground. As a result, the internal friction angle tends to increase in proportion to in-situ relative density(Very Loose, Loose, Medium) in composite ground formed by the same area replacement ratio of RAP and also increase in proportion to increasing the area replacement ratio(30, 40, 50%) of RAP in the same ground condition. Furthermore, the comparative analysis between the experimental value and theoretical value of the shear strength is carried out.

  • PDF

일정한 가반 하중이 작용하는 스카라 로봇에 대한 신경망을 이용한 기계적 처짐 오차 보상 제어 (Compensation Control of Mechanical Deflection Error on SCARA Robot with Constant Pay Load Using Neural Network)

  • 이종신
    • 제어로봇시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.728-733
    • /
    • 2009
  • This paper presents the compensation of mechanical deflection error in SCARA robot. End of robot gripper is deflected by weight of arm and pay-load. If end of robot gripper is deflected constantly regardless of robot configuration, it is not necessary to consider above mechanical deflection error. However, deflection in end of gripper varies because that moment of each axis varies when robot moves, it affects the relative accuracy. I propose the compensation method of deflection error using neural network. FEM analysis to obtain the deflection of gripper end was carried out on various joint angle, the results is used in neural network teaming. The result by simulation showed that maximum relative accuracy reduced maximum 9.48% on a given working area.

遠心 임펠러의 相對 渦流 크기 모델에 根據한 이론적인 미끄럼 係數 (An Analytical Slip Factor Based on a Relative Eddy Size Model for Centrifugal Impellers)

  • 팽기석;정명균
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.411-418
    • /
    • 2000
  • By calculating the location and size of the relative eddy formed in the rotating impellers with the logarithmic spiral vanes, a new simple but accurate slip factor is analytically derived. The proposed slip factor depends on only one parameter that is a function of the number of vanes and the vane exit angle. Predicted slip factor for various cases are compared with those estimated by a number of previous slip factors as well as a recent theoretical calculation by Visser et al. ( JFM, Vol. 268, pp. 107-141, 1994). It is found that the present slip factor yields almost similar results to Wiesner's which has been empirically formulated based on the theoretical calculation of Busemann.

Structured Light 기법을 이용한 이동 로봇의 상대 위치 추정 알고리즘 연구 (A Study on the Relative Localization Algorithm for Mobile Robots using a Structured Light Technique)

  • 노동기;김곤우;이범희
    • 제어로봇시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.678-687
    • /
    • 2005
  • This paper describes a relative localization algorithm using odometry data and consecutive local maps. The purpose of this paper is the odometry error correction using the area matching of two consecutive local maps. The local map is built up using a sensor module with dual laser beams and USB camera. The range data form the sensor module is measured using the structured lighting technique (active stereo method). The advantage in using the sensor module is to be able to get a local map at once within the camera view angle. With this advantage, we propose the AVS (Aligned View Sector) matching algorithm for. correction of the pose error (translational and rotational error). In order to evaluate the proposed algorithm, experiments are performed in real environment.

Shear strength behaviour of coral gravelly sand subjected to monotonic and cyclic loading

  • Vu, Anh-Tuan
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.89-98
    • /
    • 2021
  • The paper presents an experimental study on the strength behaviour of a coral gravelly sand from Vietnam subjected to monotonic and cyclic loading. A series of direct shear tests were carried out to investigate the shear strength behaviour and the factors affecting the shear strength of the sand such as relative density, cyclic load, amplitude of the cyclic load and loading rate. The study results indicate that the shear strength parameters of the coral gravelly sand include not only internal friction angle but also apparent cohesion. These parameters vary with the relative density, cyclic load, the amplitude of the cyclic load and loading rate. The shear strength increases with the increase of the relative density. The shear strength increases after subjecting to cyclic loading. The amplitude of the cyclic load affects the shear strength of coral gravelly sand, the shear strength increases as the amplitude of the cyclic load increases. The loading rate has insignificantly effect on the shear strength of the coral gravelly sand.