• Title/Summary/Keyword: REFLUX Code

Search Result 8, Processing Time 0.02 seconds

A Study of Reflood Heat Transfer in Electrically-Heated Fuel Rod Bundle (電氣加熱式 模擬燃料棒 다발에서의 再冠水 熱傳達 硏究)

  • 정문기;박종석;이영환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 1986
  • To predict the fuel clad temperature during the reflooding phase of a LOCA, one may need a knowledge of reflood heat tranfer mechanism in a rod bundle. For this purpose reflooding experiments have been carried out with an electrically heated 3*3 rod bundle. Using the method for the determination of local heat transfer coefficient from the measured wall temperature the parametric effects of coolant flow rate, initial wall temperature, coolant subcooling and heat generation rate on the propagation of rewetting front were investigated. Prediction of the wall temperature histories for these experiments was discussed using REFLUX code with modification of the rewetting temperature correlation. Through this modification, better agreement between experiment and prediction was obtained.

Post Test Analysis to Natural Circulation Experiment on the BETHSY Facility Using the MARS 1.4 Code

  • Chung, Young-Jong;Kim, Hee-Cheol;Chang, Moon-Hee
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.638-651
    • /
    • 2001
  • The present study is to assess the applicability of the best-estimate thermal-hydraulic code, MARS 1.4, for the analysis of thermal-hydraulic behavior in PWRs during natural circulation conditions. The code simulates a natural circulation test, BETHSY test 4. la, which was conducted on the integral test facility of BETHSY. The test represented the cooling states of the primary cooling system under single-phase natural circulation, two-phase natural circulation and the reflux condensation mode with conditions corresponding to the residual power, 2% of the rated core power value and 6.8 MPa at the secondary system. Based on MARS 1.4 calculations, the major thermal-hydraulic behaviors during natural circulation are evaluated and the differences between the experimental data and calculated results are identified. The calculated results show generally good behavior with regard to the experimental results; the region of single-phase natural circulation is 100-92% of the initial mass inventory, two-phase natural circulation is 84-63 %, and the reflux condensation mode occurred below 58 %. U-tubes empty and the core uncovery are obtained at 39 % and 34 % of the initial mass inventory, respectively.

  • PDF

Analysis of Experiments for Vertical In-Tube Steam Condensation with Noncondensable Gases Using the Modified RELAP5/MOD3.2 Code

  • Park, Hyun-Sik;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.109-109
    • /
    • 1999
  • The standard RELAP5/MOD3.2 code was modified using the non-iterative modeling. which is developed to simulate steam condensation in the presence of noncondensable gases ill a vertical tube. The modified RELAP5/MOD3.2 code was used to simulate two kinds of vertical in-tube experiments involving the condensation phenomenon in the presence of noncondensable gases. The modeling capabilities of the modified RELAP5/MOD3.2 codc as well as the standard code for the condensation in the presence of noncondensable gases are assessed using two PCCS condensation experiments and four reflux condensation experimcnts. The modified RELAP5/MOD3.2 code gives good prediction over the data of both PCCS condensation and reflux condensation experiments

  • PDF

RELAP5 Analysis of a Condensation Experiment in an Inverted U-tube

  • Park, Chul-Jin;Lee, Sang-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.383-388
    • /
    • 1995
  • Two-phase transient phenomena in the noncondensable gas-filled closed loop was investigated numerically using the RELAP5/MOD3 version 3.1 computer code. The condensation heat transfer correlation for noncondensable gases was studied in detail. Two modes of the reflux condensation which can be characterized by countercurrent flow of steam and its condensed water and the oscillatory between reflux condensation and natural circulation were predicted well. However, the natural circulation mode which the condensed water carried over the U-bend concurrently with steam was failed to predict.

  • PDF

The Simulation of Semicale Natural Circulation Test 5-NC-3,S-NC-4 Using RELAP5/Mod3.1

  • Kim, S. N.;W. H. Jang
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.424-434
    • /
    • 1998
  • RELAP5/Mod3.1 code was assessed with the semiscale experiment S-NC-3, and S-NC-4, which simulated the two-phase natural circulation and reflux condensation for the SBLOCA of PWR, respectively . Test S-NC-3 and S-NC-4 calculation results showed that RELAP5/Mod3.1 quite well describes the influence of steam generator secondary side heat transfer degradation on both two-phase natural circulation and reflux condensation. A comparison between the calculated and measured two-phase mass flow rate in test S-NC-3 shows good agreement for primary mass inventory more than 92%. And RELAP5/Mod3.1 have a good mass flow rate prediction capability for the transient such as S-NC-4 except some flow oscillations. The reflux flow rate for S-NC-4 test is under predicted, and the overall results verify that the correct prediction of the reduced liquid level appears to be required for the correct calculation of the overall phenomena.

  • PDF

Improvement of the CCFL Model of the RELAP5/MOD3.2.2B Code in a Horizontal Pipe

  • Heo, Sun;No, Hee-Cheon;Chang, Kyung-Sung;Ha, Sang-Jun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.115-115
    • /
    • 1999
  • To demonstrate the applicability of RELAP5 to the prediction of the onset offlooding in the hot leg at the reflux condensation phase during mid-loop operation, numerical analysis is performed for the counter-current flow in a horizontal pipe with the inclined riser using the RELAP5/MOD3.2.2b code. It is found that the RELAP5, simulating the CCFL phenomena using interfacial friction along with the flow regime map in the horizontal pipe, produces unsatisfactory results. Under the CCFL condition, it is observed that large oscillation exists in the flow rate, void fraction, and etc. and the liquid flow rate is much lower than that predicted by the CCFL model measured in the experiment. The CCFL model of RELAP5 for the vertical volume is extended to the model for the horizontal and inclined volumes. The horizontal volume flow regime map and interfacial friction model coupled to the CCFL model are modified. And a new correlation developed from Kang's experiment is implemented to the CCFL model of RELAP5. With this modified RELAP5, the analysis of CCFL phenomena in the horizontal pipe and hot leg geometry is performed, and produces reasonable results in comparison with experimental data.

  • PDF

Literature Review on The Research Trend of Clerodendri Trichotomi Folium and Relationship Between the Herbology and KCD-code (취오동(臭梧桐)의 국내,외 연구동향과 『본초학』, 한국표준질병사인분류의 상관관계에 대한 체계적 문헌고찰)

  • Kim, Hyun-Seok;Jeong, Jong-Kil
    • The Korea Journal of Herbology
    • /
    • v.31 no.6
    • /
    • pp.53-61
    • /
    • 2016
  • Objectives : The study was aimed to analyze the correlation between Herbology and contemporary research results, KCD-codes, and terms. The study will present information that can be used to find the direction of further researches and be applied to the education of Herbology. Methods : Papers were searched in PubMed, ScienceDirect, and KISS. Papers were then categorized as "medicine and pharmacy articles" or "articles unrelated to medicine and pharmacy." Medicine or pharmacy articles about Clerodendri Trichotomi Folium were matched with treatments in Herbology and KCD-codes. Medicine and pharmacy articles not researching Clerodendri Trichotomi Folium mainly, and articles unrelated to medicine and pharmacy were categorized and analyzed. KCD-codes and terms were arranged by treatments in Herbology. Research types, the number of papers, and the citation count were arranged by each treatment in Herbology. Degrees of Herbology research were represented as a number and a graph. Results : There were 25 Medicine and pharmacy articles about Clerodendri Trichotomi Folium, 6 medicine and pharmacy articles which did not studied Clerodendri Trichotomi Folium mainly. Among in vivo researched herbology treatments, Hypertension scored 47, migraine scored 47, and abscess and scabies scored 53. Conclusions : The category 'Abscess and scabies' was the most researched treatment in Herbology. Of the medicine and pharmacy articles that did not match treatments in Herbology, there were in vivo researching on reflux oesophagitis, Malignant neoplasm of bronchus and lung, and that of breast which can be used in the Herbology education field.

RELAP5 Analysis of the Loss-of-RHR Accident during the Mid-Loop Operation of Yonggwang Nuclear Units 3/4

  • J. J. Jeong;Kim, W. S.;Kim, K. D.;W. P. Chang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.403-410
    • /
    • 1995
  • A loss of the residual heat removal (RHR) accident during mid-loop operation of Yong-gwang Nuclear Units 3/4 was analyzed using the RELAP5/MOD3.1.2 code. In this work the following assumptions are used; (i) initially the reactor coolant system (RCS) above the hot leg center line is filled with nitrogen gas, (ii) two 3/4-inch diameter vent valves on the reactor vessel head and the top of pressurizer in the reactor coolant system are always open, and a level indicator is connected to the RMR suction line, (iii) the two steam generators are in wet layup status and the steam generator atmospheric dump valve assemblies are removed so that the secondary side pressure remains at nearly atmospheric condition throughout the accident, and (iv) the loss of RHR is presumed to occur at 48 hours after reactor shutdown. Findings from the RELAP5 calculations are (i) the core boiling begins at ∼5 min, (ii) the peak RCS pressure is ∼3.0 bar, which implies a possibility of temporary seal break, (iii) ∼94 % of the decay heat is removed by reflux condensation in the steam generator U-tubes in spite of the presence of noncondensable gas, (iv) the core uncovery time is evaluated to be 7.2 hours. Significant mass errors were observed in the calculations.

  • PDF