• 제목/요약/키워드: REACTION FORCES

검색결과 483건 처리시간 0.021초

조화집중하중을 받는 무한보에서의 음향방사 (Sound Radiation From Infinite Beams Under the Action of Harmonic Point Forces)

  • 김병삼;홍동표
    • 소음진동
    • /
    • 제2권1호
    • /
    • pp.33-39
    • /
    • 1992
  • The problem of sound radiation from infinite elastic beams under the action of harmonic point forces is studied. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z = 0 and to be axially infinite. The beam material and the elastic foundation re assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results are examined as a function of wavenumber ratio$(\gamma)$ and stiffness factor$(\Psi)$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

조화분포이동하중을 받는 무한보에서의 음향방사 (Sound Radiation From Infinite Beams Under the Action of Harmonic Moving Line Forces)

  • 김병삼;이태근;홍동표
    • 소음진동
    • /
    • 제3권3호
    • /
    • pp.245-251
    • /
    • 1993
  • The problem of sound radiation from infinite elastic beams under the action on harmonic moving line forces is studies. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z=0 and to be axially infinite. The beam material and elastic foundation are assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results examined as a function of Mach number (M), wavenumber ratio$(\gamma{)}$ and stiffness factor $(\Psi{)}$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

속도변환기법을 이용한 기계시스템의 역동학적 해석 (Inverse Dynamic Analysis of Mechanical Systems Using the Velocity Transformation Technique)

  • 이병훈;양진생;전우성
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3741-3747
    • /
    • 1996
  • This paper presents a method for the inverse dynamic anlaysis of mechanical systems. Actuating forces(or torques) depending on the driving constraints are analyzed in the relative coordinate space using the velocity transformation technique. A systematic method to compose the inverse velocity transformation matrix, which is used to determine the joint reaction forces, is proposed. Two examples are taken to verify the method developed here.

현가계 컴플라이언스 특성의 최적 설계에 관한 연구 (A Study on the Optimum Design of Compliance Characteristics of Suspension System)

  • 이장무;강주석;탁태오;윤종욱
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.88-97
    • /
    • 1998
  • Compliance elements such as bushings of a suspension system play a crucial role in determining the ride and handling characteristics of the vehicle. In this paper, a general procedure is proposed for the optimum design of compliance elements to meet various design targets. Based on the assumption that the displacements of elastokinematic behavior of a suspension system under external forces are very small, linearized elastokinematic equations in terms of infinitesimal displacements and joint reaction forces are derived. Directly differentiating the linear elastokinematic equations with respect to design variables associated with bushing stiffness, sensitivity equations are obtained. The design process for determining the bushing stiffness using sensitivity analysis and optimization technique is demonstrated.

  • PDF

축어긋남을 갖는 로터리 컴프레서의 동적해석 (Dynamic Analysis of Rotary Compressor with Rotor Misaligment)

  • 정의봉;김태학
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.82-87
    • /
    • 1997
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric parts and gas forces induced by the pressure difference between compression and suction gases. Rotor-journal bearing system is nonlinear since the stiffness and damping coefficients of the lubricating oil film are not constant in the bearings. The system is considered as a coupled problem of flexible rotor and the journal bearings. Bearing reaction force is calculated from pressure of oil film using Reynolds equations in journal bearings. Pressure distribution in journal bearing is analyzed by finite difference method. The dynamic response of rotor and bearing characteristic are discussed when rotary compressor has a relative misalignment.

  • PDF

배압실의 설계를 통한 상호회전 스크롤 압축기의 전복 모멘트 최소화 (Minimization of Tilting Moment of Co-Rotating Scroll Compressor by Design of Back Pressure Chamber)

  • 구인회;박진무
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1305-1313
    • /
    • 2000
  • In a co-rotating scroll compressor, both scrolls rotate on their fixed axes contrary to the conventional orbiting type scroll machine. This implies fixed locations and directions of the gas pressure force and sealing force. Because the tilting moment is mainly caused by interplay between the resultant force of above forces and bearing reaction force, the variation during one cycle is relatively small. Under real operation, this moment is balanced by the restoring moment created by the reaction between the baseplate and thrust bearing or between the scroll tip and baseplate. If these reactions become too large, greater torque is required due to increased friction in addition to the wear of mating parts. Consequently, appropriate study and minimization of tilting moment is important in the design of scroll machines. In this study, taking into account of the small variation of tilting moment during one cycle, we minimize the moment and thrust bearing reaction force by a properly designed back pressure chamber. As a result, for both the driving and driven scrolls, the tilting moment and the reaction force of thrust bearing can be minimized. And the stability is improved for all cases.

Analysis of Biomechanical Differences based on Distance Changes in Connection with Approach Swings of Tour-professional Golfers

  • You, Moon-Seok;Lee, Kyung-Ill
    • 한국운동역학회지
    • /
    • 제26권1호
    • /
    • pp.83-92
    • /
    • 2016
  • Objective: This study aimed to compare differences in biomechanical factors according to distance changes in relation to approaches during a round of golf to obtain basic data on golf swings. Methods: The research subjects were 8 KPGA-affiliated professional golfers who performed approach shots that put a ball into a circle of 8 feet in diameter from distances of 30, 50, and 70 m. Data were collected by using six infrared cameras and a ground reaction force device, which were applied to calculate biomechanical factors by using Kwon3D XP. The calculated data were subjected to one-way ANOVA by using SPSS 20.0, with the significance level set at p value of 0.05. Results: Elapsed time, stance width, clubhead position variation, clubhead synthesis speed, and cocking angle significantly differed according to distance change during the approach swing. Clubhead speed was positively related with stance width and clubhead displacement. Ground reaction force significantly differed according to distance change during the approach swing. Factors before and after showed differences in other states, except in the impact state. Conclusion: In the present study, we drew several conclusions regarding biomechanical factors and ground reaction forces according to distance change in the approach swing of professional golfers. According to these conclusions, we suggest that distance control with swing range is more important than power control in maintaining the accuracy and consistency of golf swing and is the most important mechanism of golf swing.

스트레인 게이지를 이용한 선박용 추진 축계의 베어링 반력 측정에 관한 연구 (A Study on the Measurement and Analysis of Bearing Reaction Forces of Marine Propulsion Shafting System using Strain-Gauge)

  • 김철우;이용진;조권회;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.33-41
    • /
    • 2008
  • Bearing damages by shaft misalignment have frequently been happened in marine ships. Specially. after stern tube bearing damage and failure for large crude oil carriers have been reported several times. However. the bearing reaction of the after stern tube bearing cannot be measured by jack-up test due to the hull structure condition. Therefore, when the jack-up test is used for the bearing reaction measurements, the bearing reaction for the after stern tube bearing obtained from the theoretical calculation method have to be used. In this paper, the shaft alignment on the large oil crude carrier is theoretically calculated and the differences between the calculated and actual installed bearing reaction values are compared. The bearing reactions for forward stern tube bearing and intermediate bearing are calculated by the simple formula using the strain gauge bending moments obtained from the measurements. Their reliability is confirmed by comparing the bearing reactions from jack-up test and the bearing reaction for after stern tube bearing is calculated by the same test. Also, the bearing reactions on the after stern tube bearing, forward stern tube bearing and intermediate shaft bearing under all operating conditions are calculated by using the bending moments obtained from the measurements and it is confirmed that the differences of the bearing reaction for all operating conditions are caused from hull deflection. The results of this study should prove useful for the future projects of the alignment calculation including the hull deflection effectiveness.

Effects of Joint Mobilization on Foot Pressure, Ankle Moment, and Vertical Ground Reaction Force in Subjects with Ankle Instability

  • Yoon, Na Mi;Seo, Yeon Soon;Kang, Yang-Hoon
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.153-159
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effects of joint mobilization on foot pressure, ankle moment, and vertical ground reaction force in subjects with ankle instability. Method: Twenty male subjects (age, $25.38{\pm}3.62yr$; height, $170.92{\pm}5.41cm$; weight, $60.74{\pm}9.63kg$; body mass index (BMI), $19.20{\pm}1.67kg/m^2$) participated and underwent ankle joint mobilization. Weight-bearing distribution, ankle dorsi/plantar flexion moment, and vertical ground reaction force were measured using a GPS 400 and a VICON Motion System (Oxford, UK), and subsequently analyzed. SPSS 20.0 for Windows was used for data processing and paired t-tests were used to compare pre- and post-mobilization measurements. The significance level was set at ${\alpha}$ = .05. Results: The results indicated changes in weight-bearing, ankle dorsi/plantar flexion moment, and vertical ground reaction force. The findings showed changes in weight-bearing distribution on the left (pre $29.51{\pm}6.31kg$, post $29.57{\pm}5.02kg$) and right foot (pre $32.40{\pm}6.30kg$, post $31.18{\pm}5.47kg$). There were significant differences in dorsi/plantar flexion moment (p < .01), and there were significant increases in vertical ground reaction forces at initial stance (Fz1) and terminal stance (Fz2, p < .05). Additionally, there was a significant reduction in vertical ground reaction force at midstance (Fz2, p < .001). Conclusion: Joint mobilization appears to alter weight-bearing distribution in subjects with ankle instability, with resultant improvements in stability.

댄스스포츠 라틴댄스 룸바 Backward Walk 동작시 지면반력 변인 분석 (Analysis of the Ground Reaction Forces by the Dancesport Rumba Backward Walk Step)

  • 유혜숙;인희교;최인애
    • 한국운동역학회지
    • /
    • 제18권1호
    • /
    • pp.129-135
    • /
    • 2008
  • 본 연구는 댄스스포츠 라틴댄스 룸바 Backward Walk 동작시 지면반력에 어떠한 영향을 미치는가를 규명하기 위해 지면반력기를 이용하여 결과를 도출하였다. 우수선수와 비우수선수간 t-test를 통해 비교하여 오른발의 동작시 수직(Fz)지면반력의 착지와 이지에서 유의한 차이를 보였고, 왼발에서는 수직(Fz), 좌우(Fx), 에서 착지와 수직(Fz), 좌우(Fx) 이지에서 유의차가 나타났다. 우수선수와 비우수선수간의 차이는 오른발에서 수직(Fz) 지면반력 이외 다른 방향에서는 유의차가 나타나지 않았으며, 왼발은 지면반력의 전후(Fy) 이지에서 유의한 차이가 없음이 밝혀졌다. 이는 일반적으로 왼발 운동능력이 트레이닝을 통하여 훈련된 우수선수 집단에서 더 발달되었음을 알 수 있다. 따라서 이러한 지면 반력의 차이를 이해하고, 비우수선수 및 초보자들의 경우 동작의 반복훈련 및 트레이닝을 통하여 양발을 균형 있게 발달시킴으로써 정확한 동작 수행이 도움을 줄 것으로 사료된다.