• 제목/요약/키워드: RDA analysis

검색결과 2,391건 처리시간 0.039초

DNA 바코딩과 고해상 융해곡선분석에 기반한 인삼속 식물의 종 판별 (Internal Transcribed Spacer Barcoding DNA Region Coupled with High Resolution Melting Analysis for Authentication of Panax Species)

  • 방경환;김영창;임지영;김장욱;이정우;김동휘;김기홍;조익현
    • 한국약용작물학회지
    • /
    • 제23권6호
    • /
    • pp.439-445
    • /
    • 2015
  • Background : Correct identification of Panax species is important to ensure food quality, safety, authenticity and health for consumers. This paper describes a high resolution melting (HRM) analysis based method using internal transcribed spacer (ITS) and 5.8S ribosomal DNA barcoding regions as target (Bar-HRM) to obtain barcoding information for the major Panax species and to identify the origin of ginseng plant. Methods and Results : A PCR-based approach, Bar-HRM was developed to discriminate among Panax species. In this study, the ITS1, ITS2, and 5.8S rDNA genes were targeted for testing, since these have been identified as suitable genes for use in the identification of Panax species. The HRM analysis generated cluster patterns that were specific and sensitive enough to detect small sequence differences among the tested Panax species. Conclusion : The results of this study show that the HRM curve analysis of the ITS regions and 5.8S rDNA sequences is a simple, quick, and reproducible method. It can simultaneously identify three Panax species and screen for variants. Thus, ITS1HRM and 5.8SHRM primer sets can be used to distinguish among Panax species.

Characterization of a Novel Cucumber mosaic virus Isolated from Petunia hybrida

  • Han, Kyung-Sook;Choi, Gug-Seoun;Chung, Bong-Nam;Cho, Jeom-Duk;Cho, In-Sook;Kim, Kee-Hong;Kim, Su;Yoon, Ju-Yeon;Choi, Seung-Kook
    • The Plant Pathology Journal
    • /
    • 제28권3호
    • /
    • pp.299-305
    • /
    • 2012
  • Petunia hybrida is commonly used in landscapes and interiors for its attractive flower. Virus-like foliar symptoms, including a mosaic with dark green islands surrounding the veins and chlorosis on the leaf margins, were observed on a petunia plant from Icheon, Gyeonggido, Korea. Cucumber mosaic virus (CMV) was identified in the symptomatic petunia by serological testing for the presence of CMV coat protein (CP) with a direct antibody-sandwich-enzyme-linked immunosorbent assay. An agent was mechanically transmitted to indicator plant species including Chenopodium quinoa. Examination of the inoculated plant leaves by RT-PCR analysis and electron microscopy revealed the presence of specifically amplified CP products and spherical virions of approximately 28 nm in diameter, respectively, providing confirmation of a CMV infection. Analysis of CP sequences showed that CMV petunia isolate (CMVYJC) shared 82.5-100% amino acid sequence identity with CPs of representative CMV strains. Phylogenetic analysis of CPs supports that CMV-YJC is a member of CMV subgroup IA (CMV-IA) and has biological properties of CMV-IA on host species. To our knowledge, this is the first report of CMV from P. hybrida in Korea.

Identification of An Antibacterial Gene by Differential Display from Lipopolysaccharide-Stimulated Dung Beetle, Copris tripartitus

  • Suh, Hwa-Jin;Kim, Yeon-Ju;Bang, Hea-Son;Yun, Eun-Young;Kim, Seong-Ryul;Park, Kwan-Ho;Kang, Bo-Ram;Kim, Ik-Soo;Jeon, Jae-Pil;Hwang, Jae-Sam
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제17권2호
    • /
    • pp.223-228
    • /
    • 2008
  • A novel beetle antimicrobial protein from stimulated Copris tripartitus and the corresponding gene were isolated in parallel through differential display-PCR and expression in Escherichia coli. To find cDNA clones responsible for bacteria resistance, the suppression subtractive hybridization and GeneFishing differentially expressed genes system were employed in the dung beetle, Copris tripartitus immunized with lipopolysaccaride. One cDNA clone from eight subtracted clones was selected through dot blot analysis and confirmed by northern blot analysis. The 516-bp, selected cDNA clone was determined by 5' and 3' rapid amplication of cDNA ends and cloned into the GST fusion expression vector pGEX-4T-1 for expression of the protein. The expressed protein was predicted 14.7 kDa and inhibited the growth of gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa. These results implied that the expressed protein is related to immune defense mechanism against microorganism.