Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.04.2012.0050

Characterization of a Novel Cucumber mosaic virus Isolated from Petunia hybrida  

Han, Kyung-Sook (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA))
Choi, Gug-Seoun (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA))
Chung, Bong-Nam (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA))
Cho, Jeom-Duk (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA))
Cho, In-Sook (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA))
Kim, Kee-Hong (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA))
Kim, Su (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA)
Yoon, Ju-Yeon (Department of Horticulture and Landscape, Seoul Women's University)
Choi, Seung-Kook (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA))
Publication Information
The Plant Pathology Journal / v.28, no.3, 2012 , pp. 299-305 More about this Journal
Abstract
Petunia hybrida is commonly used in landscapes and interiors for its attractive flower. Virus-like foliar symptoms, including a mosaic with dark green islands surrounding the veins and chlorosis on the leaf margins, were observed on a petunia plant from Icheon, Gyeonggido, Korea. Cucumber mosaic virus (CMV) was identified in the symptomatic petunia by serological testing for the presence of CMV coat protein (CP) with a direct antibody-sandwich-enzyme-linked immunosorbent assay. An agent was mechanically transmitted to indicator plant species including Chenopodium quinoa. Examination of the inoculated plant leaves by RT-PCR analysis and electron microscopy revealed the presence of specifically amplified CP products and spherical virions of approximately 28 nm in diameter, respectively, providing confirmation of a CMV infection. Analysis of CP sequences showed that CMV petunia isolate (CMVYJC) shared 82.5-100% amino acid sequence identity with CPs of representative CMV strains. Phylogenetic analysis of CPs supports that CMV-YJC is a member of CMV subgroup IA (CMV-IA) and has biological properties of CMV-IA on host species. To our knowledge, this is the first report of CMV from P. hybrida in Korea.
Keywords
coat protein; Cucumber mosaic virus; petunia; RT-PCR; sequence analysis; symptom;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Takeshita, M., Suzuki, M. and Takanami, Y. 2001. Combination of amino acids in the 3a protein and the coat protein of cucumber mosaic virus determines symptom expression and viral spread in bottle gourd. Arch. Virol. 146:697-711.   DOI
2 Huppert, E., Szilassy, D., Salanki, K., Diveki, Z. and Balazs, E. 2002. Heterologous movement protein strongly modifies the infection phenotype of cucumber mosaic virus. Journal of Virology 76:3554-3557.   DOI
3 Kaplan, I. B., Gal-on, A. and Palukaitis, P. 1997. Characterization of cucumber mosaic virus. III. Localization of sequences in the movement protein controlling systemic infection in cucurbits. Virology 230:343-349.   DOI   ScienceOn
4 Lane, L. C. 1992. A general method for detecting plant viruses. In: K. Maramorosch (ed.) Plant diseases of viral, viroid, mycoplasma and uncertain etiology. Westview Press, Boulder, Colorado, USA.
5 Lawson, R. H. and Hsu, H. T. 1994. The current state of research in plant disease control of ornamental plants: Plant Virology. Acta Hort. 353:177-179.
6 Lee, J. A., Choi, S. K., Yoon, J. Y., Hong, J. S.,. Ryu, K. H., Lee, S. Y. and Choi, J. K. 2007. Variation in the pathogenicity of lily isolates of Cucumber mosaic virus. Plant Pathol. J. 23:251-259.   DOI   ScienceOn
7 Le Romancer, M. and Nedellec, M. 1997. Effect of plant genotype, virus isolate and temperature on the expression of the potato tuber necrotic ring disease (PTNRD). Plant Pathol. 46:104-111.   DOI   ScienceOn
8 Lesemann, D. E. 1996. Viruses recently detected in vegetatively propagated petunia. Acta Hort. 432:88-94.
9 Lindgren, D. T. 1993. Petunias. Coop. Ext. Inst. of Agr. and Natural Resourcess. Univ. of Nebraska. Lincoln.
10 Marvic, I., Blatnik, A. and Ravnikar, M. 1996. Viruses infecting trailing petunias in Slovenia. Acta Hort. 432:364-366.
11 Palukaitis, P. and Garcia-Arenal, F. 2003. Cucumoviruses. Adv. Virus Res. 62:241-323.   DOI
12 Palukaitis, P., Roossinck, M. J., Dietzgen, R. G. and Francki, R. I. B. 1992. Cucumber mosaic virus. Adv. Virus Res. 41:281-348.   DOI
13 Choi, S. K., Palukaitis, P., Min, B. E., Lee, M. Y., Choi, J. K. and Ryu, K. H. 2005. Cucumber mosaic virus 2a polymerase and 3a movement proteins independently affect both virus movement and the timing of symptom development in zucchini squash. J. Gen. Virol. 86:1213-1222.   DOI   ScienceOn
14 Choi, S. K., Yoon, J. Y., Choi, J. K., Kim, K. H. and Sohn, S. H. 2007. Analysis of symptom determinant of cucumber mosaic virus RNA3 via pseudorecombinat virus in zucchini squash. Plant Pathol. J. 23:272-280.   DOI   ScienceOn
15 Clark, M. F. and Adams, A. N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34:475-783.   DOI   ScienceOn
16 Dai, S. P. and Bao, M. Z. 2004. Advances in genetics and breeding of Petunia hybrida Vilm. Chinese Bull. Bot. 21:385-391.
17 Edwardson, J. R. and Christie, R. G. 1997. Viruses infecting peppers and other solanaceous crops. Vol. I. Univ. of Florida-IFAS, Gainesville, Monograph 18-I.
18 Gal-On, A., Kaplan, I., Roossinck, M. J. and Palukaitis, P. 1994. The kinetics of infection of zucchini squash by cucumber mosaic virus indicates a function for RNA1 in virus movement. Virology 205:280-289.   DOI   ScienceOn
19 Habili, N. and Francki, R. I. B. 1974. Comparative studies on tomato aspermy and cucumber mosaic viruses. II. Virus stability. Virology 60:29-36.   DOI   ScienceOn
20 Hamrick, D. 1997. American floriculture production: The numbers. Grower Talks. June p86.
21 Hayes, R. J. and Buck, K. W. 1990. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell 63:363-368.   DOI   ScienceOn
22 Hull, R. 2002. Matthew's plant virology, 4th edn. Academic Press, New York, USA.
23 Bellardi, M. G., Rubies-Aubies-Autonell, C. and Vicchi, V. V. 1996. Virus infections of Surfinia in Italy. Acta Hort. 432:88-94.
24 Roossinck, M. J. and Palukaitis, P. 1990. Rapid induction and severity of symptoms in zucchini squash (Cucurbita pepo) map to RNA1 of cucumber mosaic virus. Mol. Plant-Microbe Interact. 3:188-192.   DOI
25 Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., Watson, L. and Zurcher, E. J. 1996. Plant viruses online: Descriptions and lists from the VIDE database (http://www.agls.uidaho.edu/ebi/vdie/refs.htm).
26 Canto, T., Prior, D. A., Hellwald, K. H., Oparka, K. J. and Palukaitis, P. 1997. Characterization of cucumber mosaic virus. IV. Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus. Virology 237:237-248.   DOI   ScienceOn
27 Yoon, J. Y., Chung, B. N., Choi, G. S. and Choi, S. K. 2011. Genetic variability in the coat protein genes of cymbidium mosaic virus isolates from orchids. Virus Genes 44:323-328.
28 Peden, K. W. C. and Symons, R. H. 1973. Cucumber mosaic virus contains a functionally divided genome. Virology 53:487-492.   DOI   ScienceOn
29 Pirone, P. P. 1978. Diseases and pests of ornamental plants. 5th ed. Wiley, New York, USA.
30 Rao, A. L. N. and Francki, R. I. B. 1982. Distribution of determinants for symptom production and host range in the three RNA components of cucumber mosaic virus. J. Gen. Virol. 61:197-205.   DOI
31 Sanchez-Cuevas, M. C. and Mameth, S. G. P. 2002. Virus-associated diseases of double petunia: Frequency and distribution in Ohio greenhouses. Acta Hort. 37:543-546.
32 Sink, K. C. 1984. Petunia, monographs on theoretical and applied genetics. Springer-Verlag. Berlin, Germany.
33 Shintaku, M. H., Zhang, L. and Palukaitis, P. 1992. A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco. Plant Cell 4:751-757.   DOI   ScienceOn
34 Suzuki, M., Kuwata, S., Masuta, C. and Takanami, Y. 1995. Point mutations in the coat protein of cucumber mosaic virus affect symptom expression and virion accumulation in tobacco. J. Gen. Virol. 76:1791-1719.   DOI   ScienceOn
35 Szilassy, D., Salanki, K. and Balazs, E. 1999. Stunting induced by cucumber mosaic cucumovirus-infected Nicotiana glutinosa is determined by a single amino acid residue in the coat protein. Mol. Plant-Microbe Interact. 12:1105-1113.   DOI   ScienceOn