• Title/Summary/Keyword: RCP 8.5 scenarios

Search Result 216, Processing Time 0.037 seconds

Economic Assessment for Flood Control Infrastructure under Climate Change : A Case Study of Imjin River Basin (기후변화를 고려한 홍수방재시설물의 경제성분석 : 임진강 유역사례)

  • Kim, Kyeongseok;Oh, Seungik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • In Imjin River basin, three floods occurred between 1996 and 1999, causing many casualties and economic losses of 900 billion won. In Korea, flood damage is expected to increase in the future due to climate change. This study used the climate scenarios to estimate future flood damage costs and suggested a real options-based economic assessment method. Using proposed method, the flood control infrastructures in Imjin River basin were selected as a case study site to analyze the economic feasibility of the investment. Using RCP (Representative Concentration Pathway) climate scenarios, the future flood damage costs were estimated through simulated rainfall data. This study analyzed the flood reduction benefits through investment in the flood control infrastructures. The volatility of flood damage reduction benefits were estimated assuming that the RCP8.5 and RCP4.5 climate scenarios would be realized in the future. In 2071, the project option value would be determined by applying an extension option to invest in an upgrading that would allow the project to adapt to the flood of the 200-year return period. The results of the option values show that the two investment scenarios are economically feasible and the project under RCP8.5 climate scenario has more flood damage reduction benefits than RCP4.5. This study will help government decision makers to consider the uncertainty of climate change in the economic assessment of flood control infrastructures using real options analysis. We also proposed a method to quantify climate risk factors into economic values by using rainfall data provided by climate scenarios.

Assessing uncertainty in future climate change in Northeast Asia using multiple CMIP5 GCMs with four RCP scenarios (RCP시나리오 기반 CMIP5 GCMs을 이용한 동북아시아 미래 기후변화 불확실성 평가)

  • Shin, Yonghee;Jung, Huicheul
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.3
    • /
    • pp.205-216
    • /
    • 2015
  • The CMIP5 climate change scenarios from 34 GCMs were analyzed to quantitatively assess future changes in temperature, precipitation, and solar radiation against the global region and the Northeast Asia region with a focus on South Korea, North Korea, or Japan. The resulting projection revealed that the Northeast Asia region is subjected to more increase in temperature and precipitation than the global means for both. In particular, temperature and precipitation in North Korea were projected to increase about $5.1^{\circ}C$ and 18%, respectively under the RCP 8.5 scenario, as compared to the historical means for 30 years (1971-2000), although a large uncertainty still exists among GCMs. For solar radiation, global mean solar radiation was predicted to decrease with time in all RCP scenarios except for the RCP 2.6 scenario. On the contrary, it was predicted that the amount of solar radiation in the Northeast Asia increases in the future period.

Analysis of climate change impact on flow duration characteristics in the Mekong River (기후변화에 따른 메콩강 유역의 미래 유황변화 분석)

  • Lee, Daeeop;Lee, Giha;Song, Bonggeun;Lee, Seungsoo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.71-82
    • /
    • 2019
  • The purpose of this study is to analyze the Mekong River streamflow alteration due to climate change. The future climate change scenarios were produced by bias corrections of the data from East Asia RCP 4.5 and 8.5 scenarios, given by HadGEM3-RA. Then, SWAT model was used for discharge simulation of the Kratie, the main point of the Mekong River (watershed area: $646,000km^2$, 88% of the annual average flow rate of the Mekong River). As a result of the climate change analysis, the annual precipitation of the Kratie upper-watershed increase in both scenarios compared to the baseline yearly average precipitation. The monthly precipitation increase is relatively large from June to November. In particular, precipitation fluctuated greatly in the RCP 8.5 rather than RCP 4.5. Monthly average maximum and minimum temperature are predicted to be increased in both scenarios. As well as precipitation, the temperature increase in RCP 8.5 scenarios was found to be more significant than RCP 4.5. In addition, as a result of the duration curve comparison, the streamflow variation will become larger in low and high flow rate and the drought will be further intensified in the future.

Estimations of flow rate and pollutant loading changes of the Yo-Cheon basin under AR5 climate change scenarios using SWA (SWAT을 이용한 AR5 기후변화 시나리오에 의한 섬진강 요천유역의 유량 및 오염부하량 변화 예측)

  • Jang, Yujin;Park, Jongtae;Seo, Dongil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Two climate change scenarios, the RCP (Representative Concentration Pathways) 4.5 and the RCP 8.5 in the fifth Assessment Report (AR5) by Intergovernmental Panel on Climate Change (IPCC), were applied in the Yocheon basin area using the SWAT (Soil and Water Assessment Tool) model to estimate changes in flow rates and pollutant loadings in the future. Field stream flow rate data in Songdong station and water quality data in Yocheon-1 station between 2013~2015 were used for model calibration. While $R^2$ value of flow rate calibration was 0.85 and $R^2$ value of water qualities were in the 0.12~0.43 range. The total study period was divided into 4 sub periods as 2030s (2016~2040), 2050s (2041~2070) and 2080s (2071~2100). The predicted results of flow rates and water quality concentrations were compared with results in calibrated periods, 2015s (2013~2015). In both RCP scenarios, flow rate and TSS (Total Suspended Solid) loadings were estimated to be in increasing trend while TN (Total Nitrogen) and TP (Total Phosphorus) loadings showed decreasing patterns. Also, flow rates and pollutant loadings showed larger differences between the maximum and the minimum values in RCP 4.5 than RCP 8.5 scenarios indicating more severe effect of drought and flood, respectively. Dependent on simulation period and rainfall periods in a year, flow rate, TSS, TN and TP showed different trends in each scenario. This emphasizes importance of considerations on time and space when analyzing climate change impacts of each variable under various scenarios.

Emergence of Anthropogenic Warming over South Korea in CMIP5 Projections (CMIP5 자료를 활용한 미래 우리나라의 인위적 영향에 의한 온난화 발현 시기 분석)

  • Boo, Kyung-On;Shim, Sungbo;Kim, Jee-Eun;Byun, Young-Hwa;Cho, Chun Ho
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • Significant warming by anthropogenic influences over Korea is analyzed using CMIP5 projections (monthly mean, maximum and minimum temperatures) from RCP 8.5, 4.5, and 2.6 scenarios. Time of emergence (TOE) in JJA and DJF is chosen as the year when the magnitude of warming against the natural climate variability satisfies S/N>2 in 80% of the models in this study. Significant emergence in JJA is expected to appear in 2030s in three RCP scenarios, earlier than TOE in DJF. In DJF, TOE is expected to be 2040s in RCP 8.5 and is delayed in 2060s, 2080s in RCP 4.5, 2.6, respectively. Later emergence in low emission scenarios implies an importance of climate change mitigation consistent with previous studies. Maximum and minimum temperatures show similar results to the case of mean temperature. ToE is found to be affected by the amplitude of natural variability by season, variables and model spread, which requires further understanding.

The Study of Adaptable Plant Species to the Change of Warmth Index by Using RCP4.5 and RCP8.5 Scenarios in Seoul City (RCP4.5와 8.5 시나리오를 이용한 온량지수 변화에 따른 서울시 적응 가능한 식물종 연구)

  • Kong, Seok-Jun;Kim, Jeong-Seob;Yang, Keum-Chul;Kim, Kyeong-Jin
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.273-282
    • /
    • 2015
  • This study suggested the adaptable plant species according to the change of warmth index (WI) through the Representative Concentration Pathway (RCP) 4.5 & 8.5 climate change scenarios from 2010 to 2099 in Seoul areas. From the scenario analysis results, we expected to change from the cool temperate souther forest zone to the warm temperate forest zone. We found the following adaptable 27 plant species: 6 species in the tree layer, Quercus serrata, Q. variabilis, Pinus densiflora, Q. acutissima, Styrax japonica and P. thunbergii etc.; 7 species in the shrub layer, Ligustrum obtusifolium, Lespedeza maximowiczii, Rhus trichocarpa, Callicarpa japonica, Rubus crataegifolius, Rosa multiflora, and Zanthoxylum piperitum etc.; 3 species in the herb layer, Oplismenus undulatifolius, Pteridium aquilinum var. latiusculum, and Commelina communis ect;, 11 species in the vine plants Smilax china, Cocculus trilobus, Parthenocissus tricuspidata, Lonicera japonica, Paederia scandens, Celastrus orbiculatus, Clematis apiifolia, Rubus parvifolius, Dioscorea batatas, Hydrangea serrata for. acuminata, Zelkova serrata etc.

An Analysis on the Climate Change Exposure of Fisheries and Fish Species in the Southern Sea under the RCP Scenarios: Focused on Sea Temperature Variation (RCP 시나리오에 따른 남해안 어업 및 어종의 기후변화 노출 분석 : 수온 변동을 대상으로)

  • Kim, Bong-Tae;Lee, Joon-Soo;Suh, Young-Sang
    • The Journal of Fisheries Business Administration
    • /
    • v.47 no.4
    • /
    • pp.31-44
    • /
    • 2016
  • The purpose of this study is to analyze the climate change exposure of fisheries and fish species in the southern sea of Korea under the RCP climate change scenarios. The extent of exposure was calculated through weighted sum of the sea temperature forecasted by National Institute of Fisheries Science, and the weight were obtained from the time-space distribution of each fisheries or species, based on the micro-data for the fishing information reported by each fisherman. Results show that all the exposed sea temperature of RCP8.5 is higher than that of RCP4.5 in year 2100 as well as in near 2030, therefore it is thought to be very important to reduce the GHG emission even in the short term. The extent of exposure was analyzed to be comparatively high especially in the fisheries such as anchovy drag nets and species like cod, anchovy and squid. Meanwhile the method of this study is considered to be excellent to obtain the accurate extent of exposure under RCP scenarios, and therefore it is applicable on assessing the vulnerability of climate change in fisheries.

Effect of Climate Changes on the Distribution of Productive Areas for Quercus mongolica in Korea (기후변화가 신갈나무의 적지분포에 미치는 영향)

  • Lee, Young Geun;Sung, Joo Han;Chun, Jung Hwa;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.605-612
    • /
    • 2014
  • This study was conducted to predict the changes of yearly productive area distribution for Quercus mongolica under climate change scenarios. For this, site index equations by ecoprovinces were first developed using environmental factors. Using the large data set from both a digital forest site map and a climatic map, a total of 48 environmental factors including 19 climatic variables were regressed on site index to develop site index equations. Two climate change scenarios, RCP 4.5 and RCP 8.5, were then applied to the developed site index equations and the distribution of productive areas for Quercus mongolica were predicted from 2020 to 2100 years in 10-year intervals. The results from this study show that the distribution of productive areas for Quercus mongolica generally decreases as time passes. It was also found that the productive area distribution of Quercus mongolica is different over time under two climate change scenarios. The RCP 8.5 which is more extreme climate change scenario showed much more decreased distribution of productive areas than the RCP 4.5. It is expected that the study results on the amount and distribution of productive areas over time for Quercus mongolica under climate change scenarios could provide valuable information necessary for the policies of suitable species on a site.

Assessment on Damage Risk of Corn for High Temperature at Reproductive Stage in Summer Season Based on Climate Scenario RCP 8.5 and 4.5

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In order to assess risk of high temperature damages about corn during reproduction stages in the future, we carried out analysis of climate change scenarios RCP (Representative Concentration Pathway) 4.5 and RCP8.5 distributed by KMA (Korea Meteorological Administration) in 2012. We established two indexes such as average of annual risk days of high temperature damage which express frequency and strengthen index of high temperature damage. As results of producing maps for 157 cities and counties about average of annual risk days of high temperature damage during total periods of scenarios, the risk of high temperature in RCP8.5 was evaluated to increase at all over nation except inland area of Gangwon province, while RCP4.5 showed similar to present, or little higher. The maps of annual risk days of high temperature damage with 10 years interval in RCP8.5 prospected that the risk for damaging corn growth would increase rapidly from 2030's. The largest risk of high temperature damage in the future of RCP8.5 was analyzed at Changnyeong county located east-south inland area in Kyeongnam province, while the smallest of risk counties were Pyeongchang, Taebaek, Inje, and Jeongseon. The prospect at 12 counties which is large to produce corn at present and contains large plains have been showed that there will be only a little increase of risk of high temperature at Goesan, Yangpyeong, Hongcheon, Seosan, and Mooju until 2060's. But considering strengthen index of high temperature damage, most regions analyzed would be prospected to increase rapidly after 2030's. To cope with high temperature damage of corn in the future, we should develop various practical technologies including breeding adapted varieties and controlling cultivation periods.

Analysis of Land Use Change Using RCP-Based Dyna-CLUE Model in the Hwangguji River Watershed (RCP 시나리오 기반 Dyna-CLUE 모형을 이용한 황구지천 유역의 토지이용변화 분석)

  • Kim, Jihye;Park, Jihoon;Song, Inhong;Song, Jung-Hun;Jun, Sang Min;Kang, Moon Seong
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.2
    • /
    • pp.33-49
    • /
    • 2015
  • The objective of this study was to predict land use change based on the land use change scenarios for the Hwangguji river watershed, South Korea. The land use change scenario was derived from the representative concentration pathways (RCP) 4.5 and 8.5 scenarios. The CLUE (conversion of land use and its effects) model was used to simulate the land use change. The CLUE is the modeling framework to simulate land use change considering empirically quantified relations between land use types and socioeconomic and biophysical driving factors through dynamical modeling. The Hwangguji river watershed, South Korea was selected as study area. Future land use changes in 2040, 2070, and 2100 were analyzed relative to baseline (2010) under the RCP4.5 and 8.5 scenarios. Binary logistic regressions were carried out to identify the relation between land uses and its driving factors. CN (Curve number) and impervious area based on the RCP4.5 and 8.5 scenarios were calculated and analyzed using the results of future land use changes. The land use change simulation of the RCP4.5 scenario resulted that the area of urban was forecast to increase by 12% and the area of forest was estimated to decrease by 16% between 2010 and 2100. The land use change simulation of the RCP8.5 scenario resulted that the area of urban was forecast to increase by 16% and the area of forest was estimated to decrease by 18% between 2010 and 2100. The values of Kappa and multiple resolution procedure were calculated as 0.61 and 74.03%. CN (III) and impervious area were increased by 0-1 and 0-8% from 2010 to 2100, respectively. The study findings may provide a useful tool for estimating the future land use change, which is an important factor for the future extreme flood.