• Title/Summary/Keyword: RCP 8.5 scenario

Search Result 210, Processing Time 0.037 seconds

Projection of Consumptive Use and Irrigation Water for Major Upland Crops using Soil Moisture Model under Climate Change (토양수분모형을 이용한 미래 주요 밭작물 소비수량 및 관개용수량 전망)

  • Nam, Won Ho;Hong, Eun Mi;Jang, Min Won;Choi, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.77-87
    • /
    • 2014
  • The impacts of climate change on upland crops is great significance for water resource planning, estimating crop water demand and irrigation scheduling. The objective of this study is to predict upland crop evapotranspiration, effective rainfall and net irrigation requirement for upland under climate change, and changes in the temporal trends in South Korea. The changes in consumptive use and net irrigation requirement in the six upland crops, such as Soybeans, Maize, Potatoes, Red Peppers, Chinese Cabbage (spring and fall) were determined based on the soil moisture model using historical meteorological data and climate change data from the representative concentration pathway (RCP) scenarios. The results of this study showed that the average annual upland crop evapotranspiration and net irrigation requirement during the growing period for upland crops would increase persistently in the future, and were projected to increase more in RCP 8.5 than those in RCP 4.5 scenario, while effective rainfall decreased. This study is significant, as it provides baseline information on future plan of water resources management for upland crops related to climate variability and change.

Estimating Effects of Climate Change on Ski Industry - The Case of Ski Resorts in South Korea - (스키산업에 기후변화가 미치는 영향 분석 - 한국의 스키장을 사례로 -)

  • Kim, Song-Yi;Park, Chan;Park, Jin-Han;Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.432-443
    • /
    • 2015
  • Ski industry is sensitive to climate change. Many studies were carried out to learn the impact on climate change to large scale ski resorts around the world and the results are difficult to be applied to small scale ski resorts in general. So, this study targeted small ski resorts composing the ski industry of Korea and forecasted the impact of climate change. As a result, based on the mitigation efforts to minimize climate changes of the future (RCP 4.5), ski industry could be maintained at the same level of today. However, if climate change continues at the current trend (RCP 8.5), ski resorts will face loss of business days. If 100 days are considered as the minimum days to maintain the ski business, among 17 ski resorts in Korea, 3 ski resorts will be driven out of business by 2030s, 12 more ski resorts by 2060s and remaining 2 ski resort by 2090s will end the business. It means that smaller ski resorts has higher chance of facing difficulties in running business just as large scale ski resorts. Therefore, to sustain the ski business, technical and managerial efforts to adapt to the changing environment is needed.

Estimation of Design Flood for the Gyeryong Reservoir Watershed based on RCP scenarios (RCP 시나리오에 따른 계룡저수지 유역의 설계홍수량 산정)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Song, Inhong;Park, Jihoon;Song, Jung-Hun;Jun, Sang Min;Kim, Kyeung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.47-57
    • /
    • 2015
  • Along with climate change, the occurrence and severity of natural disasters have been increased globally. In particular, the increase of localized heavy rainfalls have caused severe flood damage. Thus, it is needed to consider climate change into the estimation of design flood, a principal design factor. The main objective of this study was to estimate design floods for an agricultural reservoir watershed based on the RCP (Representative Concentration Pathways) scenarios. Gyeryong Reservoir located in the Geum River watershed was selected as the study area. Precipitation data of the past 30 years (1981~2010; 1995s) were collected from the Daejeon meteorological station. Future precipitation data based on RCP2.6, 4.5, 6.0, 8.5 scenarios were also obtained and corrected their bias using the quantile mapping method. Probability rainfalls of 200-year frequency and PMPs were calculated for three different future spans, i.e. 2011~2040; 2025s, 2041~2070; 2055s, 2071~2100; 2085s. Design floods for different probability rainfalls were calculated using HEC-HMS. As the result, future probability rainfalls increased by 9.5 %, 7.8 % and 22.0 %, also design floods increased by 20.7 %, 5.0 % and 26.9 %, respectively, as compared to the past 1995s and tend to increase over those of 1995s. RCP4.5 scenario, especially, resulted in the greatest increase in design floods, 37.3 %, 36.5 % and 47.1 %, respectively, as compared to the past 1995s. The study findings are expected to be used as a basis to reduce damage caused by climate change and to establish adaptation policies in the future.

MARYBLYT Study for Potential Spread and Prediction of Future Infection Risk of Fire Blight on Blossom of Singo Pear in Korea (우리나라 신고배 화상병 꽃감염 확산 가능성 및 미래 감염위험 예측을 위한 MARYBLYT 연구)

  • Kim, Min-Sun;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.182-192
    • /
    • 2018
  • Since fire blight (Erwinia amylovora) firstly broke out at mid-Korea in 2015, it is necessary to investigate potential spread of the invasive pathogen. To speculate environmental factors of fireblight epidemic based on disease triangle, a fire blight predicting program, MARYBLYT, was run with the measured meteorological data in 2014-2017 and the projecting future data under RCP8.5 scenario for 2020-2100. After calculating blossom period of Singo pear from phenology, MARYBLYT was run for blossom blight during the blossom period. MARYBLYT warned "Infection" blossom blight in 2014-15 at Anseong and Cheonan as well as Pyungtak and Asan. In addition, it warned "Infection" in 2016-17 at Naju. More than 80% of Korean areas were covered "Infection" or "High", therefore Korea was suitable for fire blight recently. Blossom blight for 2020-2100 was predicted to be highly fluctuate depending on the year. For 80 years of the future, 20 years were serious with "Infection" covered more than 50% of areas in Korea, whereas 8 years were not serious covered less than 10%. By comparisons between 50% and 10% of the year, temperature and amount of precipitation were significantly different. The results of this study are informative for policy makers to manage the alien pathogen.

Predicted Impacts of Climate Change on Dairy Cattle using Temperature Humidity Index (THI) (온습도지수를 활용한 젖소의 기후변화 영향변동 예측)

  • Kim, Byul;Lim, Joung-Soo;Cho, Sung-Back;Hwang, Ok-Hwa;Yang, Seung-Hak
    • Journal of Animal Environmental Science
    • /
    • v.20 no.2
    • /
    • pp.49-56
    • /
    • 2014
  • The climate of the earth is expected to change rapidly and continuously. Despite climate change is expected to impact on productivity of crop and livestock, a study for adaptation and impact of livestock to global warming is not enough. This study was performed to develop a method to evaluate the effects of heat stress on dairy cattle. Feedlot environment and health status of livestock were measured through an infrared thermography camera and a temperature-humidity sensor. Environmental factors such as temperature and humidity were measured to calculate the Temperature humidity index (THI). The change of the milk yield was similar to THI data pattern, suggesting that THI might play an important role to predict the effect of climate change on dairy cattle. THI data would be useful to predict long-term climate change effects on dairy cattle with RCP8.5 scenario.

Analysis of Influence on Galic Crops and Its Economical Value by Meteorological and Climatological Information (기상기후정보가 마늘 작물에 미치는 영향과 경제적 가치 분석)

  • Park, Seung Hye;Moon, Yun Seob;Jeong, Ok Jin;Kang, Woo Kyeong;Kim, Da Bin
    • Journal of the Korean earth science society
    • /
    • v.39 no.5
    • /
    • pp.419-435
    • /
    • 2018
  • The purpose of this study is to understand meteorological and climatological factors that have influence on the garlic product in Seosan and Taean, and to analyze the economic value according to the use of climatical information data for garlic farmers. The climatological characteristics and trends in this area are analyzed using the meteorological data at the Seosan local meteorological agency from 1984 to 2013, the national statistical data for the product of garlic from 1989 to 2013, and the scenario data for climate change (RCP 4.5 and 8.5) for the period from 2001 to 2100. The results are as follows. First, the condition of lower temperature for garlic growth in winter season is satisfied with the mean air temperature. The wind speed are lower and stronger in Seosan and Taean than other garlic area. The suitable condition for the growth of northern type of garlic shows the decreasing trend in the accumulated precipitation in May. However, the area of growing the northern type garlic in the future is likely diminished because mean air temperature, accumulated precipitation, and mean wind speed are strong in the harvest time of garlic. Second, the seedtime of the northern and southern type of garlic using climate change scenarios (RCP 4.5, 8.5) in Seosan and Taean is getting late as time passes. and the harvest time gets faster, which indicates s that the period of garlic cultivation becomes shorter from 50 days to around 90 in the next 100 years. Third, the beginning days of white rot and delia platura of garlic are estimated by applying to the meteorological algorithm using mean air temperature and soil humidity. Especially, the beginning day of white rot garlic is shown to be faster according to the scenarios of RCP 4.5 and RCP 8.5. Fourth, the product of garlic (kg/10a) shows a high correlation with the minimum air temperature of a wintering time, the mean wind speed of a wintering time, the accumulated precipitation of a corpulent time, and the mean relative humidity of corpulent time of garlic. On the other hand, the analysis of garlic product when using the meteorological information data in cultivating garlic in Seosan and Taean reveals that the economic value increases up to 9% in total.

Composite model for seawater intrusion in groundwater and soil salinization due to sea level rise (해수면 상승으로 인한 지하수 해수침투 및 토양 염류화 합성 평가모델)

  • Jung, Euntae;Park, Namsik;Cho, Kwangwoo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.387-395
    • /
    • 2017
  • Sea level rise, accompanied by climate change, is expected to exacerbate seawater intrusion in the coastal groundwater system. As the salinity of saturated groundwater increases, salinity can increase even in the unsaturated soil above the groundwater surface, which may cause crop damage in the agricultural land. The other adverse impact of sea level rise is reduced unsaturated soil thicknesses. In this study, a composite model to assess impacts of sea level rise in coastal agricultural land is proposed. The composite model is based on the combined applications of a three dimensional model for simulating saltwater intrusion into the groundwater and a vertical one dimensional model for simulating unsaturated zone flow and transport. The water level and salinity distribution of groundwater are calculated using the three dimensional seawater intrusion model. At some uppermost nodes, where salinity are higher than the reference value, of the 3D mesh one dimensional unsaturated zone modeling is conducted along the soil layer between the ground water surface and the ground surface. A particular location is judged salinized when the concentration at the root-zone depth exceeds the tolerable salinity for ordinary crops. The developed model is applied to a hypothetical agricultural reclamation land. IPCC RCP 4.5 and 8.5 scenarios were used as sea level rise data. Results are presented for 2050 and 2100. As a result of the study, it is predicted that by 2100 in the climate change scenario RCP 8.5, there will be 7.8% increase in groundwater saltwater-intruded area, 6.0% increase of salinized soil area, and 1.6% in increase in water-logging area.

Assessment of climate changes impacts on rural water requirements and water supply capability from agricultural reservoirs using RCP 8.5 climate change scenario (RCP 기후변화 시나리오를 이용한 전국 농어촌용수 필요수량 변화 및 농업용 저수지 공급능력 분석)

  • Kim, Jinuk;Lee, Jiwan;Kim, Yongwon;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.44-44
    • /
    • 2020
  • 최근 기후변화의 기온 상승 및 강수량 증가의 영향으로 농업용수 수요량이 증가하고 있다. 이에 따라 농업용수의 약 60%를 공급하는 농업용 저수지의 용수 수요의 변화와 그에 따른 공급능력에 대한 평가가 필수적이다(한국농어촌공사, 2019). 본 연구에서는 기후변화 시나리오를 기반으로 농업용저수지 물수지 모의 프로그램인 DIROM(Daily Irrigation Reservoir Operation Model) 모형을 활용하여 우리나라 미래 필요수량 변화에 따른 농어촌용수 수요 변화를 분석하고, 가뭄대책단계별 관리수위를 활용해 공급능력을 평가하고자 한다. 필요수량 분석을 위해 2018년 농업생산 기반시설 통계연보의 논면적 자료 및 농어촌용수 이용 합리화계획(2015~2024)의 수로손실, 삼투량 자료를 구축하였고, 공급능력 평가를 위해 한국농어촌공사 관할 3,666개 저수지 중 저수지 시설규모, 수혜면적 등을 고려하여 선정한 426개 저수지를 대상으로 농업기반시설관리시스템(RIMS)의 저수지 제원, 내용적 곡선 및 평년저수율 자료를 수집하였다. 기후변화 시나리오는 기상청으로부터 제공받은 HadGEM3-RA RCP(Representative Concentration Pathway) 8.5 시나리오를 이용하였으며 기후변화 시나리오 기간을 S1(2021-2040), S2(2041-2070), S3(2071-2099)로 구분하여 분석하였다. 전국 필요수량을 산정한 결과 평년(1981-2005) 대비 S1, S2, S3에서 각각 12.0%, 9.1% 16.4 % 증가하여 미래로 갈수록 증가하는 경향이 나타났다. 426개 저수지에 대한 물수지 분석을 통해 저수율을 산정하고 평년저수율을 통해 산정한 가뭄대책단계별 관리수위를 기준으로 용수공급능력을 파악한 결과 저수율이 40% 미만 일이 평년대비 S1, S2, S3에서 15.9일, 11.8일, 18.1일로 증가하였다. 본 연구의 결과는 미래 기후변화에 따른 농업용 저수지 용수관리계획 및 의사결정 자료로 활용 될 것이라 판단된다.

  • PDF

Analysis of extreme cases of climate change impact on watershed hydrology and flow duration in Geum river basin using SWAT and STARDEX (SWAT과 STARDEX를 이용한 극한 기후변화 사상에 따른 금강유역의 수문 및 유황분석)

  • Kim, Yong Won;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.905-916
    • /
    • 2018
  • The purpose of this study is to evaluate the climate change impact on watershed hydrology and flow duration in Geum River basin ($9,645.5km^2$) especially by extreme scenarios. The rainfall related extreme index, STARDEX (STAtistical and Regional dynamical Downscaling of EXtremes) was adopted to select the future extreme scenario from the 10 GCMs with RCP 8.5 scenarios by four projection periods (Historical: 1975~2005, 2020s: 2011~2040, 2050s: 2041~2070, 2080s: 2071~2100). As a result, the 5 scenarios of wet (CESM1-BGC and HadGEM2-ES), normal (MPI-ESM-MR), and dry (INM-CM4 and FGOALS-s2) were selected and applied to SWAT (Soil and Water Assessment Tool) hydrological model. The wet scenarios showed big differences comparing with the normal scenario in 2080s period. The 2080s evapotranspiration (ET) of wet scenarios varied from -3.2 to +3.1 mm, the 2080s total runoff (TR) varied from +5.5 to +128.4 mm. The dry scenarios showed big differences comparing with the normal scenario in 2020s period. The 2020s ET for dry scenarios varied from -16.8 to -13.3 mm and the TR varied from -264.0 to -132.3 mm respectively. For the flow duration change, the CFR (coefficient of flow regime, Q10/Q355) was altered from +4.2 to +10.5 for 2080s wet scenarios and from +1.7 to +2.6 for 2020s dry scenarios. As a result of the flow duration analysis according to the change of the hydrological factors of the Geum River basin applying the extreme climate change scenario, INM-CM4 showed suitable scenario to show extreme dry condition and FGOALS-s2 showed suitable scenario for the analysis of the drought condition with large flow duration variability. HadGEM2-ES was evaluated as a scenario that can be used for maximum flow analysis because the flow duration variability was small and CESM1-BGC was evaluated as a scenario that can be applied to the case of extreme flood analysis with large flow duration variability.

Predicting the Design Rainfall for Target Years and Flood Safety Changes by City Type using Non-Stationary Frequency Analysis and Climate Change Scenario (기후변화시나리오와 비정상성 빈도분석을 이용한 도시유형별 목표연도 설계강우량 제시 및 치수안전도 변화 전망)

  • Jeung, Se-Jin;Kang, Dong-Ho;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.871-883
    • /
    • 2020
  • Due to recent heavy rain events, there are increasing demands for adapting infrastructure design, including drainage facilities in urban basins. Therefore, a clear definition of urban rainfall must be provided; however, currently, such a definition is unavailable. In this study, urban rainfall is defined as a rainfall event that has the potential to cause water-related disasters such as floods and landslides in urban areas. Moreover, based on design rainfall, these disasters are defined as those that causes excess design flooding due to certain rainfall events. These heavy rain scenarios require that the design of various urban rainfall facilities consider design rainfall in the target years of their life cycle, for disaster prevention. The average frequency of heavy rain in each region, inland and coastal areas, was analyzed through a frequency analysis of the highest annual rainfall in the past year. The potential change in future rainfall intensity changes the service level of the infrastructure related to hand-to-hand construction; therefore, the target year and design rainfall considering the climate change premium were presented. Finally, the change in dimensional safety according to the RCP8.5 climate change scenario was predicted.