• Title/Summary/Keyword: RC slabs

Search Result 182, Processing Time 0.025 seconds

A Study on the Flexural Behavior of RC Slabs with Externally Bonded Aramid Fiber Sheets (AFRT로 보강된 철근콘크리트 슬래브의 휨거동에 관한 연구)

  • 박홍용;최익창;홍규창;박재홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.573-578
    • /
    • 1999
  • The reinforced concrete slabs with epoxy-bonded AFRT sheets were experimentally investigated. Experimental data on strength, stiffness, steel strain, deflection and mode of failure of strengthened slabs were obtained, and comparisons between the different flexural reinforcing schemes and reinforced concrete slabs without AFRT sheets were made. The result generally indicate that the flexural strength, ductile behavior of strengthened slabs increased.

  • PDF

Minimum Thickness of Long-Span RC Deck Slabs for 2-girder Bridges Designed by 80 MPa Concrete (80 MPa급 고강도 콘크리트를 활용한 2거더교 RC 장지간 바닥판의 최소두께)

  • Bae, Jae-Hyun;Yoo, Dong-Min;Hwang, Hoon-Hee;Kim, Sung-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.97-103
    • /
    • 2014
  • To ensure durability and light weight of bridges, high-strength concrete is required for long-span deck slabs. Such a technology eventually extends the life of bridges and improves the economic efficiency. The results of this study suggests a formula for calculating the minimum thickness of long-span deck slabs built with high strength concrete. The minimum thickness is proposed based on the limit states indicated in the CEB-FIP Model Code and the Korean Highway Bridge Design Code(limit state design). The design compressive strength of concrete used for the study is 80MPa. Moreover, the required thickness for satisfying the flexural capacity and limiting deflection is estimated considering the limit state load combination. The formula for minimum thickness of deck slabs is proposed considering the ultimate limit state(ULS) and the serviceability limit state(SLS) of bridges, and by comparing the Korean Highway Bridge Design Code and similar previous studies. According to the research finding, the minimum thickness of long-span deck slab is more influenced by deflection limit than flexural capacity.

Structural Performance Evaluation of Hollow Reinforced Concrete Half Slabs (철근콘크리트 중공 하프슬래브의 구조성능평가)

  • Hwang, Hyun-Bok;Kim, Sang-Woo;Hwang, Hyun-Sik;Lee, Ki-Jang;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.45-48
    • /
    • 2008
  • This study is for proposing the shape of hollow and evaluating the structural performance of hollow reinforced concrete (RC) half slabs. The two-phase experimental works were carried out, and styrofoam was used for reduction of dead load and vibration. From the Phase I test result, the shape and spacing of the hollow were determined to obtain the high deduction ratio of the concrete and the desirable failure mode of the hollow RC half slabs. In the Phase II test, two slab specimens were tested in flexure to evaluate the flexural capacity of the hollow RC half slabs with the proposed hollow shape. In the result of the test, all the specimens having the proposed hollow shape showed sufficient flexural capacity.

  • PDF

Ultimate Load of RC Structures Bonded with the Soffit Plate by p-Version Nonlinear Analysis (p-Version 비선형 해석에 의한 팻취보강된 RC구조물의 극한강도 산정)

  • 안재석;박진환;홍종현;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.365-372
    • /
    • 2004
  • A new finite element model will be presented to analyze the nonlinear behavior of not only RC beams and slabs, but also RC beams strengthened by a patch repair. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on hardening rule, crushing condition, plate-end debonding strength model and so on. The Gauss-Lobatto numerical quadrature is applied to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several numerical examples for the load-deflection curves, the ultimate loads, and the failure modes of reinforced connote slabs and RC beams bonded with steel plates or FRP plates compared with available experimental and numerical results.

  • PDF

Temperature and Stress Analysis of Box Culvert in Fire (화재에 의한 지하공동구의 온도 및 응력해석)

  • Kim, Hyun-Jun;Im, Cho-Rong;Yoo, Hyeon-Kyeong;Chung, Chul-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.31-44
    • /
    • 2011
  • This paper has presented a finite element analysis of structural behaviour of box culvert during and after fires. The fire tests were carried out in a furnace on RC slabs using the ISO 834 standard fire curve. The load capacity after cooling of the RC slab that was not loaded during the fire tests was evaluated by means of additional 3 points bending tests. In the past, stress-strain models of concrete under fire loading have been proposed by several researchers. Comparisons are made with the load-displacement relations of RC slabs after fire loading using the existing stress-strain models with temperature, such as Schneider, EUROCODE 2, Lie, Shi and Nan model. By comparing the load-displacement relations, Lie model was found to result in a maximum load about 2.0% higher than that of test. Based on the fire test results of RC slabs, this paper presents an extensive analytical study on the fire response of box culvert during and after fires.

Effect of rebar spacing on the behavior of concrete slabs under projectile impact

  • Abbas, Husain;Siddiqui, Nadeem A.;Almusallam, Tarek H.;Abadel, Aref A.;Elsanadedy, Hussein;Al-Salloum, Yousef A.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.329-342
    • /
    • 2021
  • In this paper, the effect of different steel bar configurations on the quasi-static punching and impact response of concrete slabs was studied. A total of forty RC square slab specimens were cast in two groups of concrete strengths of 40 and 63 MPa. In each group of twenty specimens, ten specimens were reinforced at the back face (singly reinforced), and the remaining specimens were reinforced on both faces of the slab (doubly reinforced). Two rebar spacing of 25 and 100 mm, with constant reinforcement ratio and effective depth, were used in both singly and doubly reinforced slab specimens. The specimens were tested against the normal impact of cylindrical projectiles of hemispherical nose shape. Slabs were also quasi-statically tested in punching using the same projectile, which was employed for the impact testing. The experimental response illustrates that 25 mm spaced rebars are effective in (i) decreasing the local damage and overall penetration depth, (ii) increasing the absorption of impact energy, and (iii) enhancing the ballistic limit of RC slabs. The ballistic limit was predicted using the quasi-static punching test results of slab specimens showing a strong correlation between the dynamic perforation energy and the energy required for quasi-static perforation of slabs.

An Experimental Study on the Flexural Strength of Construction Joints of RC Slabs at Widened Bridges (교량 확폭시 RC 상판 접합부의 휨강도에 관한 실험적 연구)

  • 배인환;심종성;장동일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.188-193
    • /
    • 1993
  • In widening of existing bridges, construction joints between old new parts of concrete slabs are subjected to repeated traffic loads during placing and curing of concrete. Therefore, the main focus of this paper is given to examine several construction methods of bridge widening. As a result, the occurrence of cracks in vibrating specimen is faster than non-vibrating one, but the difference between flexural strength and ultimate moment was negligible. Also, it shows the same result in other construction method, say direct and non-shrinkage joint specimen.

  • PDF

Impact-resistant design of RC slabs in nuclear power plant buildings

  • Li, Z.C.;Jia, P.C.;Jia, J.Y.;Wu, H.;Ma, L.L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3745-3765
    • /
    • 2022
  • The concrete structures related to nuclear safety are threatened by accidental impact loadings, mainly including the low-velocity drop-weight impact (e.g., spent fuel cask and assembly, etc. with the velocity less than 20 m/s) and high-speed projectile impact (e.g., steel pipe, valve, turbine bucket, etc. with the velocity higher than 20 m/s), while the existing studies are still limited in the impact resistant design of nuclear power plant (NPP), especially the primary RC slab. This paper aims to propose the numerical simulation and theoretical approaches to assist the impact-resistant design of RC slab in NPP. Firstly, the continuous surface cap (CSC) model parameters for concrete with the compressive strength of 20-70 MPa are fully calibrated and verified, and the refined numerical simulation approach is proposed. Secondly, the two-degree freedom (TDOF) model with considering the mutual effect of flexural and shear resistance of RC slab are developed. Furthermore, based on the low-velocity drop hammer tests and high-speed soft/hard projectile impact tests on RC slabs, the adopted numerical simulation and TDOF model approaches are fully validated by the flexural and punching shear damage, deflection, and impact force time-histories of RC slabs. Finally, as for the two low-velocity impact scenarios, the design procedure of RC slab based on TDOF model is validated and recommended. Meanwhile, as for the four actual high-speed impact scenarios, the impact-resistant design specification in Chinese code NB/T 20012-2019 is evaluated, the over conservation of which is found, and the proposed numerical approach is recommended. The present work could beneficially guide the impact-resistant design and safety assessment of NPPs against the accidental impact loadings.

Moment Distribution in continuous Slabs of Simply Supported Bridges (단순 PC 빔교의 연속 바닥슬래브에 발생하는 모멘트 분포)

  • 최창근;송명관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.398-405
    • /
    • 1997
  • The finite element program is presented for the analysis of the moment distribution in continuous slabs of simply supported girders. The program includes the material nonlinearity of the continuous and steel reinforcements of the RC slabs, but assumes that the PC beam and cross beam behave linearly. In modeling the PC slabs and girders, the four node degenerated shell element formulated based on the assumed strain interpolation and the 3D beam element are used, respectively. Using the program, the influence of the existence of the cross bean, the filling of open joints on the continuous at supports, and perfect continuation of precast girder elements are examined.

  • PDF