• Title/Summary/Keyword: RC building frame

Search Result 192, Processing Time 0.032 seconds

Dynamic performance of a composite building structure under seismic ground motions

  • Tsai, Meng-Hao;Zhang, Junfei;Song, Yih-Ping;Lu, Jun-Kai
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.179-191
    • /
    • 2018
  • This study is aimed at investigating the dynamic performance of a composite building structure under seismic ground motions. The building structure is an official fire department building located in southern Taiwan. It is composed of a seven-story reinforced concrete (RC) and an eight-story steel reinforced concrete (SRC) frame. Both frames share a common basement and are separated by expansion joints from the first to the seventh floor. Recorded floor accelerations of the building structure under eight earthquakes occurring during the period from 2011 to 2013 were examined in this paper. It is found that both frames had similar floor acceleration amplifications in the longitudinal direction, while the SRC frame revealed larger response than the RC frame in the transverse direction. Almost invariant and similar fundamental periods under the eight earthquakes in both directions were obtained from their transfer functions. Furthermore, numerical time-history simulations were carried out for the building structure under the most intensive earthquake. It is realized that the seismic response of the composite building was dominated by the first translational mode in each horizontal direction. Higher modes did not significantly contribute to the structural response. The conventional Rayleigh damping model could be appropriately applied to the time-history simulations under bi-directional excitations. Approximate floor acceleration envelopes were obtained with a compound RC and SRC structural model by using the average damping ratios determined from the different structural arrays.

Effects of confinement reinforcement and concrete strength on nonlinear behaviour of RC buildings

  • Yon, Burak;Calayir, Yusuf
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.279-297
    • /
    • 2014
  • This paper investigates the effects of confinement reinforcement and concrete strength on nonlinear behaviour of reinforced concrete buildings (RC). For numerical application, an eleven-storey and four bays reinforced concrete frame building is selected. Nonlinear incremental static (pushover) analyses of the building are performed according to various concrete strengths and whether appropriate confinement reinforcement, which defined in Turkish seismic code, exists or not at structural elements. In nonlinear analysis, distributed plastic hinge model is used. As a result of analyses, capacity curves of the frame building and moment-rotation curves at lower end sections of ground floor columns are determined. These results are compared with each other according to concrete strength and whether appropriate confinement reinforcement exists or not, respectively. According to results, it is seen that confinement reinforcement is important factor for increasing of building capacity and decreasing of rotations at structural elements.

A simplified design procedure for seismic retrofit of earthquake-damaged RC frames with viscous dampers

  • Weng, D.G.;Zhang, C.;Lu, X.L.;Zeng, S.;Zhang, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.611-631
    • /
    • 2012
  • The passive energy dissipation technology has been proven to be reliable and robust for recent practical applications. Various dampers or energy dissipation devices have been widely used in building structures for enhancing their performances during earthquakes, windstorm and other severe loading scenarios. This paper presents a simplified seismic design procedure for retrofitting earthquake-damaged frames with viscous dampers. With the scheme of designing the main frame and the supplemental viscous dampers respectively, the seismic analysis model of damped structure with viscous dampers and braces was studied. The specific analysis process was described and approach to parameter design of energy dissipation components was also proposed. The expected damping forces for damped frame were first obtained based on storey shear forces; and then they were optimized to meet different storey drift requirements. A retrofit project of a RC frame school building damaged in the 2008 Wenchuan earthquake was introduced as a case study. This building was retrofitted by using viscous dampers designed through the simplified design procedure proposed in this paper. Based on the case study, it is concluded that this simplified design procedure can be effectively used to make seismic retrofit design of earthquake-damaged RC frames with viscous dampers, so as to achieve structural performance objectives under different earthquake risk levels.

Comparisons of Elasto-Fiber and Fiber & Bernoulli-Euler reinforced concrete beam-column elements

  • Karaton, Muhammet
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • In this study, two beam-column elements based on the Elasto-Fiber element theory for reinforced concrete (RC) element have been developed and compared with each other. The first element is based on Elasto Fiber Approach (EFA) was initially developed for steel structures and this theory was applied for RC element in there and the second element is called as Fiber & Bernoulli-Euler element approach (FBEA). In this element, Cubic Hermitian polynomials are used for obtaining stiffness matrix. The beams or columns element in both approaches are divided into a sub-element called the segment for obtaining element stiffness matrix. The internal freedoms of this segment are dynamically condensed to the external freedoms at the ends of the element by using a dynamic substructure technique. Thus, nonlinear dynamic analysis of high RC building can be obtained within short times. In addition to, external loads of the segment are assumed to be distributed along to element. Therefore, damages can be taken account of along to element and redistributions of the loading for solutions. Bossak-${\alpha}$ integration with predicted-corrected method is used for the nonlinear seismic analysis of RC frames. For numerical application, seismic damage analyses for a 4-story frame and an 8-story RC frame with soft-story are obtained to comparisons of RC element according to both approaches. Damages evaluation and propagation in the frame elements are studied and response quantities from obtained both approaches are investigated in the detail.

Application of GMDH model for predicting the fundamental period of regular RC infilled frames

  • Tran, Viet-Linh;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.123-137
    • /
    • 2022
  • The fundamental period (FP) is one of the most critical parameters for the seismic design of structures. In the reinforced concrete (RC) infilled frame, the infill walls significantly affect the FP because they change the stiffness and mass of the structure. Although several formulas have been proposed for estimating the FP of the RC infilled frame, they are often associated with high bias and variance. In this study, an efficient soft computing model, namely the group method of data handling (GMDH), is proposed to predict the FP of regular RC infilled frames. For this purpose, 4026 data sets are obtained from the open literature, and the quality of the database is examined and evaluated in detail. Based on the cleaning database, several GMDH models are constructed and the best prediction model, which considers the height of the building, the span length, the opening percentage, and the infill wall stiffness as the input variables for predicting the FP of regular RC infilled frames, is chosen. The performance of the proposed GMDH model is further underscored through comparison of its FP predictions with those of existing design codes and empirical models. The accuracy of the proposed GMDH model is proven to be superior to others. Finally, explicit formulas and a graphical user-friendly interface (GUI) tool are developed to apply the GMDH model for practical use. They can provide a rapid prediction and design for the FP of regular RC infilled frames.

Study on the Nonlinear Analysis Model for Seismic Performance Evaluation of School Buildings Retrofitted with Infilled Steel Frame with Brace (철골 끼움가새골조로 보강된 학교건물의 내진성능평가를 위한 비선형 해석 모델에 관한 연구)

  • Yoo, Suk-Hyeong;Ko, Kwan-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.65-72
    • /
    • 2022
  • Recently, damage to buildings due to earthquakes in Korea occurred mainly in school buildings and Piloti-type multi-family houses, highlighting the need for seismic retrofit for buildings of the same type. In the early days of the seismic retrofit project for school facilities, various patented methods using dampers as a ductile seismic retrofit method were applied without sufficient verification procedures. However, in 「School Facility Seismic Performance Evaluation and Retrofit Manual, 2021」, when the patented method is applied, it must be applied through a separate strict verification procedure, and instead, the strength/stiffness retrofit method was induced as a general method. In practice,when evaluating seismic performance for retrofit by infilled steel frame with brace, the analysis model is constructed by directly connecting only the steel brace to the existing RC member. However, if the frame is removed from the analysis model of the infilled steel frame with brace, the force reduction occurring on the existing RC member near the retrofit is considered to be very large, and this is judged to affect the review of whether to retrofit the foundation or not. Therefore, in this study, preliminary analysis with variables such as whether or not steel frame is taken into account and frame link method for the analysis model of RC school building retrofitted by infilled steel frame with brace and nonlinear analysis for actual 3-story school building was performed, and basic data for rational analysis model setting were presented by comparing preliminary analysis and pushover analysis results for each variable.

Inelastic Dynamic Demands of a RC Special Moment Frame Building (철근 콘크리트 특수 모멘트 골조 건물의 비탄성 동적 요구값)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.11-19
    • /
    • 2005
  • Seismic design of a building is usually performed by using the linear static procedure. However, the actual behavior of the building subjected to earthquake is inelastic and dynamic in nature. Therefore, inelastic dynamic analysis is required to evaluate the safety of the structure designed by the current design codes. For the validation, a RC special moment resisting frame building was chosen and designed by IBC 2003 representing new codes. Maximum plastic rotation and dissipated energy of some selected members were calculated for examining if the inelastic behavior of the building follows the intention of the code, and drift demand were calculated as well for checking if the building well satisfies the design drift limit. In addition, the effect of including internal moment resisting frames (non lateral resisting system) on analyses results was investigated. As a result of this study, the building designed by IBC 2003 showed the inelastic behavior intended in the code and satisfied the design drift limit. Furthermore, the internal moment resisting frames should be included in the analytical model as they affect the results of seismic analyses significantly.

Structural Performance of RC Frame with SAFE Damper (SAFE댐퍼 보강골조의 구조성능 실험적 평가)

  • So, Byeong-Chan;Lee, Chang-Hwan;Ju, Young-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2015
  • SAFE damper is a hybrid damper which is comprised of a friction damper and a metallic damper. These two dampers combine to resist external energy in stages. Under minor earthquake loads, the friction damper operates alone. However, the friction damper and metallic damper dissipate the energy together when a severe earthquake occurs. In comparison with other methods for seismic retrofitting, the SAFE damper has many advantages. The SAFE damper doesn't cause damage to façade of the building, and the construction period can be reduced when retrofitting. This paper describes experiments evaluating the structural performance of the SAFE damper. From the results, it was found that the structural performance of a conventional RC bare frame can be significantly improved by the installation of the SAFE damper.

Seismic response of substandard RC frame buildings in consideration of staircases

  • Karaaslan, Ayberk;Avsar, Ozgur
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.283-295
    • /
    • 2019
  • During the seismic performance assessment of existing buildings, staircases are generally not taken into account as structural members but as dead load. Staircases, as secondary structural members, not only serve for connecting successive floors but also provide considerable amount of strength and stiffness to the building which can modify its seismic behaviour considerably. In this parametric study, the influence of staircases on the seismic response of substandard RC frame buildings which differ in number of storey and span, presence of staircase and its position has been examined. Modal Analyses and bi-directional Non-Linear Time History Analyses (NLTHA) were conducted to compare several engineering demand parameters (EDPs) such as inter-storey drift ratio (ISDR), floor accelerations, modal properties, member shear forces and plastic hinge distribution. Additionally, short column effect, variation in shear forces of columns that are attached to the staircase slab, failure and deformation in staircase models have also been investigated. As the staircase was considered in the analytical model, a different damage pattern can be developed especially in the structural components close to staircase.