• Title/Summary/Keyword: RC Structure

Search Result 943, Processing Time 0.027 seconds

Calculation and Measurement of Column Shortening High-Rise RC Structure (초고층 RC구조의 기둥축소량 해석 및 현장계측)

  • 이성원;박현일;김원식;오정근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.133-138
    • /
    • 2003
  • Axial shortenings of wall and columns were measured on level 2 and precise leveling between wall and columns were surveyed on level 5 at the Galleria Palace structure. Measured and surveyed shortening values were compared with the analysis results at the earlier stage on the process of construction for evaluating the predicted values. Though measured values represent relatively low and scattered values at earlier construction stage, probably they show similar slope curves to predicted ones with the progress of time.

  • PDF

Experimental research on seismic behavior of SRC-RC transfer columns

  • Wu, Kai;Xue, Jianyang;Nan, Yang;Zhao, Hongtie
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.157-175
    • /
    • 2016
  • It was found that the lateral stiffness changes obvious at the transfer position of the section configuration from SRC to RC. This particular behavior leads to that the transfer columns become as the important elements in SRC-RC hybrid structures. A comprehensive study was conducted to investigate the seismic behavior of SRC-RC transfer columns based on a low cyclic loading test of 16 transfer columns compared with 1 RC column. Test results shows three failure modes for transfer columns, which are shear failure, bond failure and bend failure. Its seismic behavior was completely analyzed about the failure mode, hysteretic and skeleton curves, bearing capacity deformation ability, stiffness degradation and energy dissipation. It is further determined that displacement ductility coefficient of transfer columns changes from 1.97 to 5.99. The stiffness of transfer columns are at the interval of SRC and RC, and hence transfer columns can play the role of transition from SRC to RC. All specimens show similar discipline of stiffness degradation and the process can be divided into three parts. Some specimens of transfer column lose bearing capacity swiftly after shear cracking and showed weak energy dissipation ability, but the others show better ability of energy dissipation than RC column.

Effect of viscous dampers on yielding mechanisms of RC structures during earthquake

  • Hejazi, Farzad;Shoaei, Mohammad Dalili;Jaafar, Mohd Saleh;Rashid, Raizal Saiful Bin Muhammad
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1499-1528
    • /
    • 2015
  • The yielding mechanisms of reinforced concrete (RC) structures are the main cause of the collapse of RC buildings during earthquake excitation. Nowadays, the application of earthquake energy dissipation devices, such as viscous dampers (VDs), is being widely considered to protect RC structures which are designed to withstand severe seismic loads. However, the effect of VDs on the formation of plastic hinges and the yielding criteria of RC members has not been investigated extensively, due to the lack of an analytical model and a numerical means to evaluate the seismic response of structures. Therefore, this paper offers a comprehensive investigation of how damper devices influence the yielding mechanisms of RC buildings subjected to seismic excitation. For this purpose, adapting the Newmark method, a finite element algorithm was developed for the nonlinear dynamic analysis of reinforced concrete buildings equipped with VDs that are subjected to earthquake. A special finite element computer program was codified based on the developed algorithm. Finally, a parametric study was conducted for a three-story RC building equipped with supplementary VD devices, performing a nonlinear analysis in order to evaluate its effect on seismic damage and on the response of the structure. The results of this study showed that implementing VDs substantially changes the mechanism and formation of plastic hinges in RC buildings.

Seismic rehabilitation of substandard RC columns with partially deteriorated concrete using CFRP composites

  • Hou, Dongxu;Wu, Zhimin;Zheng, Jianjun;Cui, Yao
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.1-20
    • /
    • 2015
  • Many existing reinforced concrete (RC) columns in structures tend to become substandard RC ones due to updated standards or environmental changes. These substandard columns may alter the behaviors of the whole structure and therefore are in urgent need of seismic retrofitting. Owing to their superior advantages, carbon fiber reinforced polymer (CFRP) composites are widely used to retrofit RC columns. The applications mainly focus on various substandard RC columns, but few deals with substandard columns with deteriorated concrete, especially damaged by earthquake. The purpose of this paper is to investigate the seismic behaviors of CFRP reinforced partially deteriorated RC columns and to evaluate the effect of CFRP sheets on them. Six flexure-dominant columns were tested under a constant axial load and transverse cyclic displacements. It is found that the seismic behaviors of partially deteriorated columns can be recovered by wrapping CFRP sheets on them. Numerical analysis is then conducted using finite element methods and verified with experimental results. The effects of the axial load ratio, the ratio of the thickness of CFRP sheet to the column diameter, and the slenderness ratio on the seismic behaviors of CFRP reinforced RC columns are evaluated. Finally, a method is proposed to determine the required thickness of CFRP sheet.

Seismic Performance Evaluation of Unreinforced Masonry Walls with Additional Boundary RC Frames (RC 경계골조를 설치한 신축 비보강 조적벽체의 내진성능 평가)

  • You, Young-Chan;Kim, Min-Sun;Lee, Hyun-Jee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.27-35
    • /
    • 2018
  • The purpose of this study is to examine the effects of boundary RC frame(composed of one tie-beam and two tie-columns) on seismic performance of unreinforced masonry walls to suggest alternative way for seismic design of unreinforced masonry wall structures. Two test specimens are prepared, one is a typical unreinforced masonry wall and another is alternative unreinforced masonry wall with additional boundary RC frame. The structural experiments were carried out to evaluate the difference of seismic resistance performance between two test specimens with or without the boundary RC frames. From the test results, it was found that the failure mode of unreinforced masonry wall fundamentally changed from 'brittle' to 'ductile' by the installing of boundary RC frames. And, the maximum load and energy dissipation capacity of the test specimen with boundary RC frame was increased about 1.6~1.7 and 2~3 times respectively compared with a typical unreinforced masonry wall specimen.

Experimental and numerical investigation of RC frames strengthened with a hybrid seismic retrofit system

  • Luat, Nguyen-Vu;Lee, Hongseok;Shin, Jiuk;Park, Ji-Hun;Ahn, Tae-Sang;Lee, Kihak
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.563-577
    • /
    • 2022
  • This paper presents experimental and numerical investigations of a new seismic enhancement method for existing reinforced concrete (RC) frames by using an external sub-structure, the hybrid seismic retrofit method (HSRM) system. This retrofit system is an H-shaped frame bolt-connected to an existing RC frame with an infilled-concrete layer between their gaps. Two RC frames were built, one with and one without HSRM, and tested under cyclic loading. The experimental findings showed that the retrofitted RC frame was superior to the non-retrofitted specimen in terms of initial stiffness, peak load, and energy dissipation capacity. A numerical simulation using a commercial program was employed for verification with the experiments. The results obtained from the simulations were consistent with those from the experiments, indicating the finite element (FE) models can simulate the seismic behaviors of bare RC frame and retrofitted RC frame using HSRM.

Comparative study of the seismic response of RC framed buildings retrofitted using modern techniques

  • Mazza, Fabio
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.29-48
    • /
    • 2015
  • The main purpose of this work is to compare different criteria for the seismic strengthening of RC framed buildings in order to find the optimal combinations of these retrofitting techniques. To this end, a numerical investigation is carried out with reference to the town hall of Spilinga (Italy), an RC framed structure with an L-shaped plan built at the beginning of the 1960s. Five structures are considered, derived from the first by incorporating: carbon fibre reinforced polymer (FRP)-wrapping of all columns; base-isolation, with high-damping-laminated-rubber bearings (HDLRBs); added damping, with hysteretic damped braces (HYDBs); FRP-wrapping of the first storey columns combined with base-isolation or added damping. A three-dimensional fibre model of the primary and retrofitted structures is considered; bilinear and trilinear laws idealize, respectively, the behaviour of the HYDB, providing that the buckling be prevented, and the FRP-wrapping, without resistance in compression, while the response of the HDLRB is simulated by using a viscoelastic linear model. The effectiveness of the retrofitting solutions is tested with nonlinear dynamic analyses based on biaxial accelerograms, whose response spectra match those in the Italian seismic code.

Feasibility of Management Plan in Electric Power Structure using Close-Range Photogrammetry (근거리사진측량방법을 이용한 전력구조물의 유지관리방안)

  • 김감래;김명배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.219-228
    • /
    • 1995
  • The facilities of electric power plant which were constructed in and after the 1960's are superannuated in these days. We are expanding them applying an incressary to secure a safe plan for them. In this study, for a feasibility of management plan in electric power structure, a RC test prame was manufactured for monitoring and calculation of variation using close range photogrammetry. On the basis of this data, monitoring and calculating of variation in soil wall building site were carried out. Also a survey and analysis of a influence which occured to a structure near by exactitude site. All of these afford data for a management plan in electric power structure.

  • PDF

Damping Ratios for Seismic Design of SC Structures (SC구조의 내진설계를 위한 감쇠비)

  • Lee, Seung-Joon;Kim, Won-Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.487-496
    • /
    • 2010
  • The structural damping ratios for seismic design of nuclear power plant structures are specified in Regulatory guide 1.61 of the United States NRC for RC structures of 4%(OBE) and 7%(SSE), and for steel structures of 3%(OBE) and 4%(SSE), but not for steel-plate concrete (SC) structures that have been developed recently. The objective of this study is to investigate the damping ratios of SC structures by identifying the relative differences in the damping ratios between RC and SC structures. An experimental study was performed on four specimens, RC-S, RC-M, SC-S and SC-M, where S stands for shear-governed and M for moment-governed. The conducted method was free vibration testing by rupturing a brittle steel plate that linked the actuator and the mass center. The test results were analyzed to determine fundamental frequencies and damping ratios at various load levels. By examining the relative differences in damping ratios of four specimens, it is proposed for SC structures to use the same damping ratio of 4% as RC one at OBE, but 1% less damping ratio than RC one resulting in 6% at SSE.

Analysis of Containment Building Subjected to a Large Aircraft Impact using a Hydrocode (Hydrocode를 이용한 격납구조의 대형 민항기 충돌해석)

  • Shin, Sang Shup;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.369-378
    • /
    • 2011
  • In this paper, the response analysis of RC(Reinforced Concrete), SC(Steel-Plate Concrete) containment buildings subjected to a large aircraft impact is performed using Autodyn-3D as Hydrocode. Until now, the impact load in the analysis of aircraft impacts has been applied to target structures at the local area by using the impact load-time history function of Riera. However in this paper, the results of aircraft crash are analyzed by using an aircraft model similar to Boeing 767 and verified by comparing the generated history of the aircraft crash against the rigid target with another history by using the Riera's function. To estimate the resistivity of the impact, the response and safety of SC containment buildings, this study is performed by comparing the four cases of plane concrete, reinforced concrete, bonded containment liner plate at reinforced concrete, and SC structure. Thus, the different behaviors between SC and RC structures when they are subjected to the extreme impact load could be anticipated. Consequently, the improved safety is expected by replacing RC structure with SC structure for nuclear power plants.