본 논문에서는 대표적인 시스템 모델링 도구중의 하나인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)를 설계하고 모델을 최적화하기 위하여 최적화 알고리즘인 PSO(Particle Swarm Optimization) 알고리즘을 이용하였다. 즉, 모델의 최적화에 주요한 영향을 미치는 모델의 파라미터들을 PSO 알고리즘을 이용하여 동정한다. 제안된 RBF 뉴럴 네트워크는 은닉층에서의 활성함수로서 일반적으로 많이 사용되어지는 가우시안 커널함수를 사용한다. 더 나아가 모델의 최적화를 위하여 각 커널함수의 중심값은 HCM 클러스터링에 기반을 두어 중심값을 결정하고, PSO 알고리즘을 통하여 가우시안 커널함수의 분포상수, 은닉층에서의 노드 수 그리고 다수의 입력을 가질 경우 입력의 종류를 동정한다. 제안한 모델의 성능을 평가하기 위해 Mackey-Glass 시계열 공정 데이터를 적용하였으며 제안된 모델의 근사화와 일반화 능력을 분석한다.
예측 문제를 해결하기 위한 데이타마이닝 기법은 다양한 분야에서 주목받고 있다. 이것에 대한 한 예로 컴퓨터-기반의 질병의 예측 혹은 진단은 CDSS(Clinical Decision support System)에서 가장 중요한 요소이기도 하다. 이러한 예측 문제를 해결하기 위해서 RBF커널 같은 비선형 커널을 사용한 SVM이 가장 널리 사용되고 있는데, 이는 비선형 SVM이 어떠한 다른 분류기법보다 정확한 성능을 보이기 때문이다. 하지만 비선형 SVM을 사용한 경우에는 모델내부를 시각화하는 일이 어려워서 예측결과에 대한 직관적인 이해가 힘들고, 의학 전문가들은 이러한 비선형 SVM의 사용을 기피하고 있는 실정이다. Nomogram은 SVM을 시각화하기 위해 제안된 기법이다. 하지만 이는 선형 SVM의 경우에만 사용이 가능하고. 이 문제를 해결하기 위해서 LRBF 커널이 제안된 바 있다. LRBF 커널은 기존의 RBF 커널을 사용한 SVM과 대등한 결과를 보이면서도 예측결과의 선형적 분석도 가능하게 한다. 본 논문에서는 노모그램(Nomogram)과 LRBF 커널을 사용한 SVM이 통합되어 있는 예측 툴 VRIFA를 제안한다. 이 툴은 사용자와 상호작용하며 비선형 SVM 모델의 내부구조를 데이타의 각 속성별로 보여주는 방법으로 사용자가 예측결과를 직관적으로 이해하도록 도와준다. VRIFA는 Nomogram기반의 피쳐선택(feature selection) 기능도 포함하고 있는데, 이 기능은 예측결과에 부정적인 영향을 끼치거나 중복된 연관성을 보이는 속성을 제거함으로써 모델의 정확도를 높이는 데 기여한다. 그리고 데이터에 포함된 클래스의 비율이 한 쪽으로 치우쳐져 있는 경우에는 ROC 곡선 넓이(AUC)를 예측결과를 평가하기 위한 측도로 사용할 수 있다. 이 툴은 컴퓨터-기반의 질병 예측 혹은 질병의 위험 요소 분석에 대해 연구하는 연구자들에게 유용하게 사용될 것으로 전망하는 바이다.
통계학습이론에 기반하고 있는 Support Vector Machine(SVM)은 구조적 위험 최소화원리를 바탕으로 하는 학습 알고리즘이다. 일반적으로SVM은 비선형 경계를 결정하고 자료를 분류하기 위해서 커널(kernel)을 사용한다. 그러나 기존의 커널들은 두 벡터간의 내적이나 거리차를 이용하여 유사도를 측정하기 때문에 하이퍼스펙트럴 영상분류에 효과적으로 적용될 수 없다. 본 논문에서는 이를 해결하기 위해서 분광유사도커널(Spectral similarity kernel)을 제안한다. 분광유사도 커널은 두 벡터의 거리차와 각 차이를 모두 계산하는 지역적 커널로 하이퍼스펙트럴 영상의 분광특성을 효과적으로 고려할 수 있다. 이를 검증하기 위해서 Hyperion 영상에 polynomial kernel, RBF kernel을 사용한 SVM 분류기와 분광유사도 커널을 사용한 SVM 분류기를 적용하여 토지피복분류를 시행하였다. 분류결과를 통해서 분광유사도 커널을 사용한 SVM 분류기가 정량적, 공간적으로 가장 우수한 결과를 보임을 확인하였다.
최근 고해상도 위성영상은 자연자원이나 환경 관리에 필요로 하는 토지 피복 및 이용 현황자료 분석 등에 유용하게 사용되고 있다. 영상처리 알고리즘 중 SVM 알고리즘은 최근 다양한 분야에서 이용되고 있다. 그러나 SVM 알고리즘은 다양한 커널 함수 및 매개변수에 의해 그 정확도가 달라진다. 따라서 본 논문에서는 SVM 알고리즘의 대표적 커널 함수를 KOMPSAT-2의 영상자료에 적용하고 토지피복결과를 검사점을 이용하여 정확도 분석을 실시하였다. 또한 대상지의 토지피복분류에 적합한 SVM의 커널 함수 선정하기 위해 분석을 실시하였다. 그 결과 전체 분류 정확도에는 Polynomial 커널 함수가 가장 높은 정확도를 보였으며 분류 항목별 정확도에서의 가장 적절한 커널 함수는 Polynomial, RBF 커널 함수임을 알 수 있었다.
본 논문에서는 GMM-supervector를 특징 파라미터로 하는 SVM 기반 화자 분류에 대해서 실험하였다. 실험을 위한 화자 클러스터를 생성하기 위해서 기존의 SNR 기반 가중치를 반영한 KL거리 기반 화자변화검출을 실행하였다. SVM 기반 화자 분류는 2단계로 이루어져있다. 1단계는 UBM과 화자 모델들간의 SVM 기반 분류를 시행하여 각 클러스터에 화자 정보를 인덱싱한 다음 화자별로 그룹핑한다. 2단계는 화자 클러스터 그룹에 UBM과 화자모델들간의 SVM 기반 분류를 시행한다. SVM의 커널 함수로는 Linear와 RBF를 사용하였다. 실험결과, 1단계에서는 Linear 커널이 화자 클러스터 148개, MDR 0, FAR 47.3, ER 50.7로 좋은 성능으로 보였다. 2단계 실험결과도 Linear 커널이 화자 클러스터 109개, MDR 1.3, FAR 28.4, ER 32.1로 좋은 성능을 보였다.
본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 입력개수, 입력변수, 클러스터의 개수를 PSO알고리즘(Particle Swarm Optimization)을 사용하여 최적화 시켰다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.
본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 각 노드의 후반부 파라미터들은 최소자승법을 이용하여 최적화 하였다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.
본 논문에서는 유도 전동기의 기계적 결함을 진단하기 위해 진동신호와 질감 분석을 이용한 알고리즘을 제안한다. 영상화된 결함 신호가 갖는 무늬, 색상 대비의 특징을 분석하고, 그레이레벨 동시발생행렬(Gray-Level Co-occurrence Model, GLCM)을통해 세 가지 질감특징을추출한다. 추출된 세 가지질감 특징을 RBF(Radial Basis Function) 커널 함수를 사용하는 다중레벨 서포터 벡터 머신(Multi-Level Support Vector Machine, MLSVM)의 입력으로 사용하여 결함 유형을 분류한다. 결함 유형을 분류하는 최적의 MLSVM을 위한 RBF 커널 함수의 매개변수를 찾기 위해 매개변수 값을 0.3부터 1.0으로 바꿔가며 분류성능을 평가한 결과, 결함 유형별로 0.3에서 0.6사이의 매개변수 값에서 100%에 가까운 분류 정확성을 보였다. 또한 15dB, 20dB의 잡음이 첨가된 진동신호를 이용한 실험에서도 평균 98%이상의 높은 분류 정확성을 보였다.
본 논문에서는 초음파를 이용하여 자율 운행을 하는 이동로봇이 가지는 물리적인 문제점을 해결하기 위한 방안을 제시 한다. 이동 로봇이 주변 환경을 인지함에 있어서 각종 센서를 사용한다. 그러한 센서들은 항상 올바른 값을 주지 않는다. 센서값에는 항상 노이즈가 포함되어 있는데 이것을 해결하기 위해서 학습 알고리즘인 SVR(Support Vector Regression)을 사용하여 주변 환경을 센싱한 초음파 값을 토대로 주변 환경을 추정할 수 있다. SVR을 사용하기 위해서는 SVR의 요소인 parameter와 커널을 선정해야 한다. SVR의 요소를 선정함에 있어서 정해진 값이 존재하지 않기 때문에 실험을 통해서 가장 적합한 parameter 값을 선정해야 한다. 또한 커널을 선정함에 있어서는 일반화가 가장 잘 되어 있는 RBF(Radial Basis Function)커널을 사용하였다. 본 논문에서는 세가지 환경에서의 실험을 통하여 SVR을 이용하여 센서값의 오류를 개선할 수 있음을 나타내었다.
Journal of the Korean Data and Information Science Society
/
제26권6호
/
pp.1353-1366
/
2015
공정의 안정성을 평가하기 위해 사용되는 Shewhart 관리도 기법은 최근 다양한 분야에서 널리 응용되고 있지만, 품질 특성치에 대한 엄격한 확률분포를 가정한다. 하지만 현업에서 수집되고 있는 데이터의 확률분포는 알려진 경우가 많지 않으며, 다변량 데이터로 확장될수록 확률분포를 결정하는데 더 큰 어려움이 따른다. 이러한 문제점을 해결하기 위해 다양한 비모수 관리도 기법이 연구되었는데, 최근 연구되고 있는 비모수 관리도 기법 중 하나인 RBF (Radial Basis Function) 커널 기반의 SVDD (Support Vector Data Description) 관리도는 관리상태 하의 데이터 영역에 대한 경계를 결정함으로써 공정의 이상상태를 탐지하는 기법으로 K 관리도로 불리우며, 다양한 분야에서 적용되고 있다. 그런데 K 관리도를 적용하기 위해서는 관리도의 성능을 결정짓는 커널모수 등의 선택이 중요하며, 관리도를 작성하기 전에 미리 결정되어야 한다. 이를 위해 기존의 연구들은 격자 탐색법 등을 활용하여 모수를 결정하고 있지만, 선택 가능한 범위에 대한 반복적인 계산으로 최적값을 선택하고 있어 계산 비용이 커지고 또 시간 등의 문제로 실제 문제에 적용하기 어려운 점이 있다. 따라서 본 연구에서는 데이터의 구조에 따라 모의실험을 통해 선택 가능한 영역에서의 효율성을 비교 검토하고, 이를 바탕으로 쉽게 적용할 수 있는 새로운 모수 선택 방법을 제안하고자 한다. 이를 통해 데이터 구조에 대해 강건함을 보이는 모수의 선택과 K 관리도의 구성을 논의하고 실제 자료에 적용해 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.