• Title/Summary/Keyword: RBF 망

Search Result 103, Processing Time 0.032 seconds

Communication Channel Equalization Using Adaptive Neural Net (적응 신경망을 이용한 통신 채널 등화)

  • 김정수;권용광;김민수;이대학;이상윤;김재공
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1037-1040
    • /
    • 1999
  • This paper investigates a RBF(Radial Basis Function) equalizer for channel equalization. RBF network has an identical structure to the optimal Bayesian symbol-decision equalizer solution. Therefore RBF can be employed to implement the Bayesian equalizer. Proposed algorithm of this paper makes channel states estimation to be unncessary, also makes center number which is needed indivisual channel to be minimum. Bayesian Equalizer has the theorical optimum performance. Proposed Equalizer performance is compared with this Baysian equalizer performance.

  • PDF

Recognition System of Passports by Using Enhanced Fuzzy Neural Networks (개선된 퍼지 신경망을 이용한 여권 인식 시스템)

  • 류재욱;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.155-161
    • /
    • 2003
  • 출입국 관리 절차를 간소화하는 방안의 하나로 퍼지 신경망을 이용한 여권 인식 시스템을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 수평 스미어링, 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출한다 여권의 문자열 영역은 OCR 문자 서체로 구성되어 있고, 명도 차이가 다양하게 나타난다. 따라서 추출된 문자열 영역을 블록 이진화와 평균 이진화를 각각 수행하고 그 결과들을 AND 비트 연산을 취하여 적응적으로 이진화한다. 이진화된 문자열 영역에 대해서 개별 코드의 문자들을 복원하기 위하여 CDM(Conditional Dilation Morphology) 마스크를 적용한 후, 역 CDM마스크와 HEM(Hit Erosion Morphology)마스크를 적용하여 잡음을 제거한다 잡음이 제거된 문자열 영역에 대해 수직 스미어링을 적용하여 개별 코드의 문자를 추출한다. 추출된 개별 코드의 인식은 퍼지 ART 알고리즘을 개선하여 RBF 네트워크의 중간층으로 적용하는 퍼지 RBF 네트워크와 개선된 퍼지 ART 알고리즘과 지도 학습을 결합한 퍼지 자가 생성 지도 학습 알고리 즘을 각각 제안하여 여권의 개별 코드 인식에 적용한다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상을 대상으로 실험한 결과, 제안된 추출 및 인식 방법이 여권 인식에서 우수한 성능이 있음을 확인하였다.

  • PDF

Self-organized Distributed Networks for Precise Modelling of a System (시스템의 정밀 모델링을 위한 자율분산 신경망)

  • Kim, Hyong-Suk;Choi, Jong-Soo;Kim, Sung-Joong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.151-162
    • /
    • 1994
  • A new neural network structure called Self-organized Distributed Networks (SODN) is proposed for developing the neural network-based multidimensional system models. The learning with the proposed networks is fast and precise. Such properties are caused from the local learning mechanism. The structure of the networks is combination of dual networks such as self-organized networks and multilayered local networks. Each local networks learns only data in a sub-region. Large number of memory requirements and low generalization capability for the untrained region, which are drawbacks of conventional local network learning, are overcomed in the proposed networks. The simulation results of the proposed networks show better performance than the standard multilayer neural networks and the Radial Basis function(RBF) networks.

  • PDF

A new neural linearizing control scheme using radial basis function network (Radial basis function 회로망을 이용한 새로운 신경망 선형화 제어구조)

  • Kim, Seok-Jun;Lee, Min-Ho;Park, Seon-Won;Lee, Su-Yeong;Park, Cheol-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.526-531
    • /
    • 1997
  • To control nonlinear chemical processes, a new neural linearizing control scheme is proposed. This is a hybrid of a radial basis function(RBF) network and a linear controller, thus the control action applied to the process is the sum of both control actions. Firstly, to train the RBF newtork a linear reference model is determined by analyzing the past operating data of the process. Then, the training of the RBF newtork is iteratively performed to minimize the difference between outputs of the process and the linear reference model. As a result, the apparent dynamics of the process added by the RBF newtork becomes similar to that of the linear reference model. After training, the original nonlinear control problem changes to a linear one, and the closed-loop control performance is improved by using the optimum tuning parameters of the linear controller for the linear dynamics. The proposed control scheme performs control and training simultaneously, and shows a good control performance for nonlinear chemical processes.

  • PDF

A Study on Channel Compensation Algorithm for Robust Speaker Recognition (화자인식 성능 향상을 위한 채널 보상 알고리즘에 관한 연구)

  • Kim Jung Ho;Jung Hui Seok;Kang Chul Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.131-134
    • /
    • 2002
  • 화자 확인시스템에서 화자 변이, 잡음환경, 그리고 학습환경과 인식환경의 불일치등이 화자확인에 어려움을 가져다 준다. 본 논문에서는 유무선 전화망에서 화자 확인의 성능을 개선하기 위한 채널 보상 알고리즘을 제안한다. 화자 확인시스템에서 유무선 전화망의 채널 왜곡을 보상하기 위한 방법으로 RBF(Radial Basis Function) 신경망을 이용하여 특징 벡터를 사상하는 알고리즘을 이용하며 유선과 무선의 채널 왜곡을 감소시킨다. 동일한 화자의 유무선의 벡터 영역이 서로 다르므로 등록단계에서 RBF 신경망을 사용하여 화자의 특징 벡터를 유선과 무선의 비슷한 벡터 영역으로 사상하고, 인식단계에서는 유무선의 우도비를 비교하여 결정규칙에 의해 판별한다. 켑스트럼 평균 차감법(CMS) 보다 제안한 채널 보상 알고리즘이 인식율이 향상을 실험에 의해 확인하였다.

  • PDF

A Study on Speaker Recognition Algorithm Through Wire/Wireless Telephone (유무선 전화를 통한 화자인식 알고리즘에 관한 연구)

  • 김정호;정희석;강철호;김선희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.182-187
    • /
    • 2003
  • In this thesis, we propose the algorithm to improve the performance of speaker verification that is mapping feature parameters by using RBF neural network. There is a big difference between wire vector region and wireless one which comes from the same speaker. For wire/wireless speakers model production, speaker verification system should distinguish the wire/wireless channel that based on speech recognition system. And the feature vector of untrained channel models is mapped to the feature vector(LPC Cepstrum) of trained channel model by using RBF neural network. As a simulation result, the proposed algorithm makes 0.6%∼10.5% performance improvement compared to conventional method such as cepstral mean subtraction.

A Study on Pattern Recognition Using Polynomial-based Radial Basis Function Neural Networks (다항식기반 RBF 신경회로망을 이용한 패턴인식에 대한 연구)

  • Ji, Kwang-Hee;Kim, Woong-Ki;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.387-389
    • /
    • 2009
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경 회로망을 설계하고 이를 패턴분류 문제에 적용하여 그 성능을 분석한다. 제안된 RBF 신경회로망은 입력층, 은닉층, 출력층으로 이루어진다. 입력층의 연결가중치는 1로서 입력층의 입력벡터는 그대로 은닉층으로 전달되고 은닉층은 FCM(Fuzzy C-means Clustering)방법을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습되어진다. 네트워크의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의한 퍼지추론의 결과로 얻어진다. 제안된 RBF 신경회로망은 여러 종류의 machine learning 데이터에 적용하여 패턴분류기로서의 성능을 평가받는다.

  • PDF

Decentralized Control of Robot Manipulator Using the RBF Neural Network (RBF 신경망을 이용한 로봇 매니퓰레이터의 분산제어)

  • Won, Seong-Un;Kim, Yeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.657-660
    • /
    • 2003
  • Control of multi-link robot arms is a very difficult problem because of the highly nonlinear dynamics. Decentralized control scheme is developed for control of robot manipulators based on RBF(Radial Basis Function) Neural Networks. RBF Neural Networks is used to approximate the coupling forces among the joints, coriolis force, centrifugal force, gravitational force, and frictional force. The compensation controller is also proposed to estimate the bound of approximation error so that the chattering effect of the control effort can be reduced. The proposed scheme does not require an accurate manipulator dynamic, and it is proved that closed-loop system is asymptotic stable despite the gross robot parameter variations. Numerical simulations for two-link robot manipulator are included to show the effectiveness of controller.

  • PDF