• 제목/요약/키워드: RBF 망

검색결과 103건 처리시간 0.039초

RBF 회로망을 이용한 비선형 시스템의 적응 선형화 제어기의 설계 (Design of Adaptive Linearization Controller for Nonlinear System Using RBF Networks)

  • 탁한호;김명규
    • 한국정보통신학회논문지
    • /
    • 제5권3호
    • /
    • pp.525-531
    • /
    • 2001
  • 본 논문은 방사기저함수(RBF) 회로망이 도립진자 시스템의 검증에 관해 효과적으로 사용됨을 보여준다. 전체적인 제어시스템의 구성은 플랜트를 제어하기 위해 PD제어기와 RBF 회로망 제어기를 사용하여 병렬로 구성하였다. 그리고 제어 결과를 시뮬레이션을 통하여 PD 제어기와 RBF 회로망 제어기를 비교함과 동시에 비선형 제어에 대한 RBF 회로망의 우수성을 제시하였다.

  • PDF

Raised Cosine RBF 신경망을 이용한 무제약 필기체 숫자 인식 (Recognition of Unconstrained Handwritten Digits Using Raised Cosine RBF Neural Networks)

  • 박준근;김상희;박원우
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.48-53
    • /
    • 2002
  • 본 논문에서는 무제약 필기체 숫자 인식에 있어서 향상된 RBF(Radial Basis Function) 신경망을 이용한 새로운 접근 방법을 제시하였다. RBF 신경망은 인식률과 인식 속도를 향상시키기 위해 기저 함수로서 Raised Cosine RBF를 사용하였다. Raised Cosine RBF 신경망 분류기의 성능 평가를 위하여 캐나다 몬트리올 Concordia 대학의 무제약 필기체 숫자 데이터베이스를 사용하였고, 실험 결과 98.05%의 인식률을 보였다.

  • PDF

중소하천유역에서 Hybrid Neural Networks에 의한 수문학적 예측 (Hydrological Forecasting Based on Hybrid Neural Networks in a Small Watershed)

  • 김성원;이순탁;조정식
    • 한국수자원학회논문집
    • /
    • 제34권4호
    • /
    • pp.303-316
    • /
    • 2001
  • 본 연구에서는 중소하천수계에서 수문학적 예측을 위하여 Hybrid Neural Networks의 일종인 반경기초함수(RBF) 신경망모형이 적용되었다. RBF 신경망모형은 4종류의 매개변수로 구성되어 있으며, 지율 및 지도훈련과정으로 이루어져있다. 반경기초함수로서 가우스핵함수(GKF)가 이용되었으며, GKF의 매개변수인 중심과 폭은 K-Means 군집알고리즘에 의해 최적화 된다. 그리고 RBF 신경망모형의 매개변수인 중심, 폭, 연결강도와 편차벡터는 훈련을 통하여 최적 매개변수의 값이 결정되며, 이 매개변수들을 이용하여 모형의 검증과정이 이루어진다. RBF 신경망모형은 한국의 IHP 대표유역중 하나인 위천유역에 적용하였으며, 모형의 훈련과 검증을 위하여 10개의 강우사상을 선택하였다. 또한 RBF 신경망모형과 비교검토하기 위하여 엘만 신경망(ENN)모형을 이용하였으며, ENN 모형은 일단게 할선역전파(OSSBP) 및 탄성역전파(RBP)알고리즘으로 이루어져 있다. 모형의 훈련과 검증과정을 통하여 RBF 신경망모형이 ENN 모형보다 양호한 결과를 나타내는 것으로 분석되었다. RBF 신경망모형은 훈련시키는데 시간이 적게 들고, 이론적 배경이 부족한 수문학자들도 쉽게 사용할 수 있는 신경망모형이다.

  • PDF

RBF 신경회로망을 이용한 교류 동기 모터의 강인 속도 제어 (Robust Speed Control of AC Permanent Magnet Synchronous Motor using RBF Neural Network)

  • 김은태;이성열
    • 전자공학회논문지SC
    • /
    • 제40권4호
    • /
    • pp.243-250
    • /
    • 2003
  • 본 논문에서는 RBF 신경망 외란 관측기를 이용한 영구자석형 동기모터의 속도추종 제어기를 제안한다. 먼저 공칭 모델에 대하여 입출력 선형화에 기반한 속도 제어기를 설계하고 RBF 신경망 외란 관측기에 의해 시스템의 블확실성을 보상한다. 시스템의 파라미터와 부하 토크의 변동을 동시에 추정하는 RBF 신경망 외란 관측기를 이용함으로써 제안한 제어 알고리즘은 시스템의 불화실성에 강인한 특성을 갖는다. 마지막으로 모의실험을 통하여 제안된 제어기의 타당성을 검증한다.

자력(自力) RBF 신경망 등화기 (Self Organizing RBF Neural Network Equalizer)

  • 김정수;정정화
    • 전자공학회논문지CI
    • /
    • 제39권1호
    • /
    • pp.35-47
    • /
    • 2002
  • 본 논문은 디지털 통신 채널의 등화를 위한 자력 RBF 신경망 등화기를 제안한다. RBF 신경망을 이용한 등화기에서, 이상적인 채널 상태인 RBF 센터를 정확하고 빠르게 추정하는 것이 가장 중요하다. 그러나, 기존의 RBF 등화기는 채널 상태의 개수를 사전에 알아야 하며, 많은 수의 센터가 필요하다는 단점을 지니므로 실제 통신 시스템에 이용되지 않는다. 본 논문에서 제안하는 자력 RBF 신경망 등화기는 등화에 필요한 RBF 센터를 새로운 추가 기준과 제거 기준에 의해 등화기로 입력되는 신호 중에서 스스로 선택하기 때문에 채널 상태의 개수에 대한 사전 정보 없이도 등화가 가능하다. 또한 제안된 등화기는 LMS 알고리즘과 클러스터링을 이용하는 훈련 과정을 통해 기존 RBF 등화기보다 적은 센터만으로도 등화가 가능한 장점을 갖는다. 선형 및 비선형 채널과 표준 전화 채널에서, 제안한 등화기와 최적 Bayesian 등화기의 BER 성능, 심볼결정 경계, 센터 수 등을 비교하였다. 그 결과 제안한 등화기는 Bayesian 등화기와 거의 동일한 성능을 나타냄을 알 수 있었다.

능동적인 데이터 선택에 의한 RBF 신경망의 학습 (Learning RBF Neural Networks by Active Data Selection)

  • 박상욱;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.478-480
    • /
    • 2000
  • 본 논문에서는 데이터를 능동적으로 선택하고, 그 데이터에 맞추어 RBF 은닉 뉴런을 증가시키는 신경망을 제안한다. 현재의 신경망에 대해서 가장 학습이 어려운 데이터를 선택해서 신경망을 학습하고, 학습한 신경망에 대해서 다시 에러가 가장 큰 데이터를 뽑아서 학습시키는 과정을 반복한다. 5개의 실세계 데이터에 대해 실험을 해보고, Platt이 제안한 RAN과 성능을 비교한다. 점진적으로 임계 데이터를 선택해서 학습을 함으로써, 전체 데이터를 다 사용하지도 않고도, 전체 데이터를 다 사용한 경우와 비슷한 성능을 보임을 실험을 통해서 알 수 있다.

  • PDF

RBF망을 이용한 소프트웨어 유지보수 비용 추정 (Software Maintenance Cost Estimation using RBF Network)

  • 박주석;정기원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.555-562
    • /
    • 2004
  • 소프트웨어 회사들은 새로운 개발보다는 기존 프로젝트의 유지보수와 성능향상 프로젝트를 보다 많이 수행한다. 기존의 비용 추정 모델들은 유지보수 프로젝트들에 적용할 수 있지만, 유지보수 분야에 적용시키기 위해서는 변경이 필요하다. 본 논문은 개발 프로젝트와 유지보수 프로젝트의 기능점수 계산방법을 분류하고 ISBSG의 밴치마킹 자료를 회귀 분석한 결과를 토대로 유지보수 프로젝트의 비용을 측정할 수 있는 방법을 제안하였다. 먼저, ISBSG 자료를 소프트웨어 비용에 영향을 미치는 요소인 프로그램 추가, 변경과 삭제 3가지 요소의 8가지 중에서 실제 유지보수가 나타나는 4가지 그룹으로 분류하였다. 그리고, 그룹별로 통계적 모델과 RBF 망(Radial Basis Function Network)을 이용한 모델을 개발하여 각각의 성능을 분석 평가한 결과 RBF 망이 통계적 모델보다 좋은 성능을 보였다.

퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크 (FCM-based RBF Network Using Fuzzy Control Method)

  • 김태형;박충식;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제38차 하계학술발표논문집 16권1호
    • /
    • pp.149-154
    • /
    • 2008
  • FCM 기반 RBF 네트워크는 서로 다른 학습 구조가 결합된 혼합형 모델로서, 입력층과 중간층의 학습 구조는 FCM 알고리즘을 적용하고, 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용한다. 입력층과 중간층의 학습시 입력벡터와 중간층의 노드중에서 중심과 입력벡터간의 가장 가까운 노드를 승자 노드로 선택하여 출력층으로 전달한다. 그리고 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용하여 중간층의 승자 뉴런이 출력층의 입력벡터로 적용한다. 하지만 많은 패턴이 입력벡터로 제시될 경우 학습 성능이 저하되는 단점이 있다. 따라서 본 논문에서는 중간층과 출력층의 학습 구조인 Max_Min 알고리즘의 학습 성능을 개선시키기 위해 퍼지 제어시스템을 이용하여 학습률을 동적으로 조정하는 퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크를 제안한다. 제안된 방법의 학습 성능을 평가하기 위하여 컨테이너 영상에서 추출한 숫자, 영문 식별자를 학습 데이터로 적용한 결과, 기존의 ART2 기반 RBF 네트워크보다 학습 시간이 적게 소요되고, 학습의 수렴성이 개선된 것을 확인하였다.

  • PDF

신경망 기반의 오염부하량 산정을 위한 위성영상 토지피복 분류기법 (Neural Network Based Land Cover Classification Technique of Satellite Image for Pollutant Load Estimation)

  • Park, Sang-Young;Ha, Sung-Ryong
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.1-4
    • /
    • 2001
  • Landsat TM 위성영상을 대상으로 인공신경망 모형과 RBF 신경망 모형의 토지피복분류 정확도를 평가하였다. 토지피복의 특성에 따라 세 개의 연구지역(복합토지이용, 농경지, 도시지역)을 대상으로 RBF 신경망 모형의 입력밴드 조합 및 분류 항목의 변화에 따른 민감도 분석이 수행되었다. 오염부하 원단위의 신뢰구간 및 분포를 추정하기 위하여 붓스트랩기법이 적화하였으며, 특히 토지이용이 다양한 도시지역에서 가장 큰 변화폭을 보였다.

  • PDF

RBF 망 이용 소프트웨어 개발 노력 추정 성능향상 (Improving Estimative Capability of Software Development Effort using Radial Basis Function Network)

  • 이상운;박영목;박재홍
    • 정보처리학회논문지D
    • /
    • 제8D권5호
    • /
    • pp.581-586
    • /
    • 2001
  • 소프트웨어 개발에서 점점 더 중요시되는 사항은 개발 생명주기의 초기에 개발과 관련된 노력과 비용을 추정하는 능력이다. 소프트웨어 개발노력과 비용추정을 위한 대부분의 모델이 선형회귀분석 절차를 사용하였다. 그러나 소프트웨어의 복잡성, 개발환경의 다양성으로 인해 소프트웨어 개발노력과 비용 추정은 점점 더 부정확해지고 있다. 이 목적을 달성하기 위해서는 비선형 방법을 사용해야 한다. 따라서 본 논문은 소프트웨어 개발 노력을 추정하는데 비선형 관계를 표현 가능한 RBF망 모델을 제안한다. 24개 소프트웨어 사례연구를 통해 적합한 RBF 망 모델을 제시하였다. 또한, 회귀분석 모델과 RBF망 모델을 비교하여 RBF 망 모델의 정확성이 가장 좋음을 보였다.

  • PDF