• 제목/요약/키워드: RBF(Radial Basis Function) Network

검색결과 147건 처리시간 0.031초

PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화 (Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization)

  • 최정내;김현기;오성권
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

Similar Patterns for Semi-blind Watermarking

  • Cho, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • 제2권4호
    • /
    • pp.251-255
    • /
    • 2004
  • In this paper, we present a watermarking scheme based on the DWT (Discrete Wavelet Transform) and the ANN (Artificial Neural Network) to ensure the copyright protection of the digital images. The problem to embed watermark is not clear to select important coefficient in the watermarking. We used the RBF (Radial-Basis Function) to solve the problem. We didn't apply the whole wavelet coefficients, but applied to only the wavelet coefficients in the selected node. Using the ANN, although even the watermark casting process and watermark verification process are in public, nobody knows the location of embedding watermark except of authorized user. As the result, the watermark is good at the strength test-filtering, geometric transform and etc.

정보 유사성 기반 입자화 중심 RBF NN의 진화론적 설계 (Genetic Design of Granular-oriented Radial Basis Function Neural Network Based on Information Proximity)

  • 박호성;오성권;김현기
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.436-444
    • /
    • 2010
  • In this study, we introduce and discuss a concept of a granular-oriented radial basis function neural networks (GRBF NNs). In contrast to the typical architectures encountered in radial basis function neural networks(RBF NNs), our main objective is to develop a design strategy of GRBF NNs as follows : (a) The architecture of the network is fully reflective of the structure encountered in the training data which are granulated with the aid of clustering techniques. More specifically, the output space is granulated with use of K-Means clustering while the information granules in the multidimensional input space are formed by using a so-called context-based Fuzzy C-Means which takes into account the structure being already formed in the output space, (b) The innovative development facet of the network involves a dynamic reduction of dimensionality of the input space in which the information granules are formed in the subspace of the overall input space which is formed by selecting a suitable subset of input variables so that the this subspace retains the structure of the entire space. As this search is of combinatorial character, we use the technique of genetic optimization to determine the optimal input subspaces. A series of numeric studies exploiting some nonlinear process data and a dataset coming from the machine learning repository provide a detailed insight into the nature of the algorithm and its parameters as well as offer some comparative analysis.

유무선 전화를 통한 화자인식 알고리즘에 관한 연구 (A Study on Speaker Recognition Algorithm Through Wire/Wireless Telephone)

  • 김정호;정희석;강철호;김선희
    • 한국음향학회지
    • /
    • 제22권3호
    • /
    • pp.182-187
    • /
    • 2003
  • 본 논문에서는 방사 기저함수 (RBF: Radial Basis Function) 신경망을 이용하여 특징 파라미터를 사상시켜 화자인식의 성능을 개선하기 위한 알고리즘을 제안하였다. 동일한 화자의 유무선 전화의 백터 영역이 서로 다르므로 제안한 화자확인시스템은 유무선 학습모델을 생성하기 위해서 먼저 음성인식을 통해 유무선 채널을 판별하고, 학습하지 않은 채널의 모델은 방사 기저함수 신경망을 이용하여 학습된 모델의 특징 벡터 (LPC-켑스트럼)를 사상하는 방법이다. 모의 실험 결과 기존의 켑스트럼 평균 차감법을 사용할 때보다 제안한 알고리즘을 적용했을 때의 인식율이 약 0.6%∼10.5%의 성능 향상을 보여주었다.

Using Neural Networks to Forecast Price in Competitive Power Markets

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.271-274
    • /
    • 2005
  • Under competitive power markets, various long-term and short-term contracts based on spot price are used by producers and consumers. So an accurate forecasting for spot price allow market participants to develop bidding strategies in order to maximize their benefit. Artificial Neural Network is a powerful method in forecasting problem. In this paper we used Radial Basis Function(RBF) network to forecast spot price. To learn ANN, in addition to price history, we used some other effective inputs such as load level, fuel price, generation and transmission facilities situation. Results indicate that this forecasting method is accurate and useful.

  • PDF

Reduced RBF Centers Based Multiuser Detection in DS-CDMA System

  • 이정식;화재정;박지연
    • 한국통신학회논문지
    • /
    • 제31권11C호
    • /
    • pp.1085-1091
    • /
    • 2006
  • The major goal of this paper is to develop a practically implemental radial basis function (RBF) neural network based multi-user detector (MUD) for direct sequence (DS)-CDMA system. This work is expected to provide an efficient solution for RBF based MUD by quickly setting up the proper number of RBF centers and their locations required in training. The basic idea in this research is to estimate all the possible RBF centers by using supervised ${\kappa-means$ clustering technique, and select the only centers which locate near seemingly decision boundary between centers, and reduce further by grouping the some of centers adjacent each other. Therefore, it reduces the computational burden for finding the proper number of RBF centers and their locations in the existing RBF based MUD, and ultimately, make its implementation practical.

적응 신경망을 이용한 통신 채널 등화 (Communication Channel Equalization Using Adaptive Neural Net)

  • 김정수;권용광;김민수;이대학;이상윤;김재공
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1037-1040
    • /
    • 1999
  • This paper investigates a RBF(Radial Basis Function) equalizer for channel equalization. RBF network has an identical structure to the optimal Bayesian symbol-decision equalizer solution. Therefore RBF can be employed to implement the Bayesian equalizer. Proposed algorithm of this paper makes channel states estimation to be unncessary, also makes center number which is needed indivisual channel to be minimum. Bayesian Equalizer has the theorical optimum performance. Proposed Equalizer performance is compared with this Baysian equalizer performance.

  • PDF

Rich-Scattering 페이딩 채널에서 RBF Network를 이용한 MIMO 수신기 (MIMO Receiver Using RBF Network Over Rich-Scattering fading channels)

  • 고균병;강창언;홍대식
    • 대한전자공학회논문지TC
    • /
    • 제40권8호
    • /
    • pp.301-306
    • /
    • 2003
  • 본 논문에서는 RBF Network를 이용한 새로운 수신기법을 MIMO 환경에서 제안한다. 그리고, 제안된 수신기의 성능을 Rich-scattering 페이딩 채널에서의 모의 실험을 통해 검증한다. 모의 실험 결과를 통해 제안된 수신기가 MLD와 유사한 성능을 나타내고, VBLAST-ZF와 VBLAST-MMSE보다 우수한 성능을 나타냄을 확인하였다. 그리고, 다양한 송수신 안테나의 개수 및 변조 기법에 따른 RBF 개수가 성능에 미치는 영향을 조사하였으며, 제안된 수신기의 성능을 RBF 중심값의 초기화 율에 따라 확인하였다.

리니어형 초전도 전원장치 모델링을 위한 입자화 기반 Neurocomputing 네트워크 설계 (Design of Granular-based Neurocomputing Networks for Modeling of Linear-Type Superconducting Power Supply)

  • 박호성;정윤도;김현기;오성권
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1320-1326
    • /
    • 2010
  • In this paper, we develop a design methodology of granular-based neurocomputing networks realized with the aid of the clustering techniques. The objective of this paper is modeling and evaluation of approximation and generalization capability of the Linear-Type Superconducting Power Supply (LTSPS). In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The underlying design tool guiding the development of the granular-based neurocomputing networks revolves around the Fuzzy C-Means (FCM) clustering method and the Radial Basis Function (RBF) neural network. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the membership values of the input space with the aid of FCM clustering. To modeling and evaluation of performance of the linear-type superconducting power supply using the proposed network, we describe a detailed characteristic of the proposed model using a well-known NASA software project data.

Feature selection using genetic algorithm for constructing time-series modelling

  • Oh, Sang-Keon;Hong, Sun-Gi;Kim, Chang-Hyun;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.102.4-102
    • /
    • 2001
  • An evolutionary structure optimization method for the Gaussian radial basis function (RBF) network is presented, for modelling and predicting nonlinear time series. Generalization performance is significantly improved with a much smaller network, compared with that of the usual clustering and least square learning method.

  • PDF