• 제목/요약/키워드: RBDO

검색결과 59건 처리시간 0.021초

스프링 최적설계를 위한 피로수명 파라미터의 역 추정 (Inverse Estimation of Fatigue Life Parameters for Spring Design Optimization)

  • 김완범;안다운;최주호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.345-348
    • /
    • 2011
  • 구조요소의 설계에서 유한요소해석은 매우 효과적인 방법이다. 이 방법은 시험 수행에 드는 시간과 비용을 줄여준다. 그러나 공정 과정과 환경에 의하여 생기는 입력 물성치들의 변화 때문에 우리는 유한요소해석의 결과를 전적으로 믿어서는 안 된다. 따라서 유한요소해석의 신뢰성을 증명하는 것은 매우 중요하다. 본 연구에서는 현장에 축적된 피로 수명 시험 데이터를 바탕으로 유한요소해석을 이용하여 피로수명 파라미터를 역 추정 하는 연구를 수행하였다. 베이지안 접근법을 이용하여 불확실성 피로 수명 파라미터의 사후분포를 구하였고, 마코프체인몬테카를로(Markov Chain Monte Carlo) 기법을 이용하여 역 추정된 파라미터의 샘플 데이터를 생성하였다. 얻어진 샘플 데이터를 기반으로 새로운 형상의 스프링에 대한 피로 수명을 예측한다. 신뢰성 기반 형상 최적화(RBDO)는 서스펜션 코일 스프링의 요구수명을 만족시키기 위하여 수행된다. 또한 크리깅 근사 모델은 유한요소해석의 연산 량 감소를 위해 이용한다.

  • PDF

Preliminary Research on the Uncertainty Estimation in the Probabilistic Designs

  • Youn Byung D.;Lee Jae-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • 제9권1호
    • /
    • pp.64-71
    • /
    • 2005
  • In probabilistic design, the challenge is to estimate the uncertainty propagation, since outputs of subsystems at lower levels could constitute inputs of other systems or at higher levels of the multilevel systems. Three uncertainty propagation estimation techniques are compared in this paper in terms of numerical efficiency and accuracy: root sum square (linearization), distribution-based moment approximation, and Taguchi-based integration. When applied to reliability-based design optimization (RBDO) under uncertainty, it is investigated which type of applications each method is best suitable for. Two nonlinear analytical examples and one vehicle crashworthiness for side-impact simulation example are employed to investigate the unique features of the presented techniques for uncertainty propagation. This study aims at helping potential users to identify appropriate techniques for their applications in the multilevel design.

복원가능 시스템 설계를 위한 복원도 할당 (Resilience Allocation for Resilient Engineered System Design)

  • 윤병동;후차오;왕핑펭;윤정택
    • 제어로봇시스템학회논문지
    • /
    • 제17권11호
    • /
    • pp.1082-1089
    • /
    • 2011
  • Most engineered systems are designed with high levels of system redundancies to satisfy required reliability requirements under adverse events, resulting in high systems' LCCs (Life-Cycle Costs). Recent years have seen a surge of interest and tremendous advance in PHM (Prognostics and Health Management) methods that detect, diagnose, and predict the effects of adverse events. The PHM methods enable proactive maintenance decisions, giving rise to adaptive reliability. In this paper, we present a RAP (Resilience Allocation Problem) whose goal is to allocate reliability and PHM efficiency to components in an engineering context. The optimally allocated reliability and PHM efficiency levels serve as the design specifications for the system RBDO (Reliability-Based Design Optimization) and the system PHM design, which can be used to derive the detailed design of components and PHM units. The RAP is demonstrated using a simplified aircraft control actuator design problem resulting in a highly resilient actuator with optimally allocated reliability, PHM efficiency and redundancy for the given parameter settings.

An Integrated Design Process for Manufacturing and Multidisciplinary Design Under System Uncertainty

  • Byeng Dong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.61-68
    • /
    • 2004
  • Necessity to address engineering system uncertainties in design processes has long been acknowledged. To obtain quality of product, a safety factor is traditionally used by many design engineers due to its easy of use and comprehension. However, the safety factor approach often yields either conservative or unreliable designs, since it ignores the type of probability distribution and the mechanism of uncertainty propagation from the input to the output. For a consistent reliability-based design, two fundamental issues must be investigated thoroughly. First, the design-decision process that clearly identifies a mechanism of uncertainty propagation under system uncertainties needs to be developed, which must be an efficient and accurate process. To identify the mechanism more effectively, an adaptive probability analysis is proposed by adaptively setting probability levels through a posteriori error estimation. The second is to develop the design process that not only yields a high quality design but also a cost-effective optimum design from manufacturing point of view. As a result, a response surface methodology is specially developed for RBDO, thus enhancing numerical challenges of efficiency and complicatedness. Side crashworthiness application is used to demonstrate the integrated design process for product and manufacturing process design.

확률모델 불확실성을 고려한 구조물의 신뢰도 기반 최적설계 - 제2편: 강인 성능 평가 (Reliability-based Structural Design Optimization Considering Probability Model Uncertainties - Part 2: Robust Performance Assessment)

  • 옥승용;박원석
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.115-121
    • /
    • 2012
  • This paper, being the second in a two-part series, presents the robust performance of the proposed design method which can enhance a reliability-based design optimization(RBDO) under the uncertainties of probabilistic models. The robust performances of the solutions obtained by the proposed method, described in the Part 1, are investigated through the parametric studies. A 10-bar truss example is considered, and the uncertain parameters include the number of data observed, and the variations of applied loadings and allowable stresses. The numerical results show that the proposed method can produce a consistent result despite of the large variations in the parameters. Especially, even with the relatively small data set, the analysis results show that the exact probabilistic model can be successfully predicted with optimized design sections. This consistency of estimating appropriate probability model is also observed in the case of the variations of other parameters, which verifies the robustness of the proposed method.

확률모델 불확실성을 고려한 구조물의 신뢰도 기반 최적설계 - 제1편: 설계 방법 (Reliability-based Structural Design Optimization Considering Probability Model Uncertainties - Part 1: Design Method)

  • 옥승용;박원석
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.148-157
    • /
    • 2012
  • Reliability-based design optimization (RBDO) problem is usually formulated as an optimization problem to minimize an objective function subjected to probabilistic constraint functions which may include deterministic design variables as well as random variables. The challenging task is that, because the probability models of the random variables are often assumed based on limited data, there exists a possibility of selecting inappropriate distribution models and/or model parameters for the random variables, which can often lead to disastrous consequences. In order to select the most appropriate distribution model from the limited observation data as well as model parameters, this study takes into account a set of possible candidate models for the random variables. The suitability of each model is then investigated by employing performance and risk functions. In this regard, this study enables structural design optimization and fitness assessment of the distribution models of the random variables at the same time. As the first paper of a two-part series, this paper describes a new design method considering probability model uncertainties. The robust performance of the proposed method is presented in Part 2. To demonstrate the effectiveness of the proposed method, an example of ten-bar truss structure is considered. The numerical results show that the proposed method can provide the optimal design variables while guaranteeing the most desirable distribution models for the random variables even in case the limited data are only available.

제한된 이산정보를 이용한 로어컨트롤암의 신뢰성 기반 최적설계 (Reliability-based Design Optimization for Lower Control Arm using Limited Discrete Information)

  • 장준용;나종호;임우철;박상현;최성식;김정호;김용석;이태희
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.100-106
    • /
    • 2014
  • Lower control arm (LCA) is a part of chassis in automotive. Performances of LCA such as stiffness, durability and permanent displacement must be considered in design optimization. However it is hard to consider different performances at once in optimization because these are measured by different commercial tools like Radioss, Abaqus, etc. In this paper, firstly, we construct the integrated design automation system for LCA based on Matlab including Hypermesh, Radioss and Abaqus. Secondly, Akaike information criterion (AIC) is used for assessment of reliability of LCA. It can find the best estimated distribution of performance from limited and discrete stochastic information and then obtains the reliability from the distribution. Finally, we consider tolerances of design variables and variation of elastic modulus and achieve the target reliability by carrying out reliability-based design optimization (RBDO) with the integrated system.

판재성형공정에서의 소재 강도에 따른 스프링백 산포의 통계분석 (Statistical Analysis of the Springback Scatter according to the Material Strength in the Sheet Metal Forming Process)

  • 손민규;김세호
    • 한국융합학회논문지
    • /
    • 제13권4호
    • /
    • pp.287-292
    • /
    • 2022
  • 본 논문에서는 소재의 강도에 따라 U 채널형상 제품의 판재성형공정에서 발생하는 스프링백 현상의 산포경향의 분석을 수행하였다. 성형공정의 유한요소해석 및 신뢰성 기반 최적화 기법을 적용하여 인장강도, 항복강도, 소재 두께 등 재질 산포와 마찰계수와 패딩력 등의 공정 산포를 고려하여 산포해석을 실시하였다. 산포해석 결과 산포에 유의한 영향을 미치는 인자는 항복강도와 인장강도 순으로 나타났으며, 소재의 인장강도가 클수록 스프링백 양은 증가하는 반면 스프링백의 산포량이 감소하는 것을 확인하였다. 주요 변형이 발생하는 펀치 어깨부와 다이 어깨부의 변형률과 응력 산포 분석을 통하여 스프링백 산포량 감소의 원인을 분석하였다. 본 논문에 제안된 산포분석기법을 활용할 경우 불가피하게 발생하는 성형공정의 산포를 예측하고 대응이 가능할 것으로 기대된다.

개선된 피어슨 시스템을 이용한 신뢰성기반 최적설계 (Reliability-Based Design Optimization Using Enhanced Pearson System)

  • 김태균;이태희
    • 대한기계학회논문집A
    • /
    • 제35권2호
    • /
    • pp.125-130
    • /
    • 2011
  • 확정론적 최적설계 방법은 설계 혹은 공정과정에서 발생하는 설계변수의 불확실성을 고려하지 않아 최적점이 제한조건의 경계점에 위치한다. 신뢰성기반 최적설계는 설계자가 요구하는 신뢰도를 만족하는 범위에서 목적함수가 최소가 되는 최적점을 찾는 방법이다. 이 과정은 최적설계 과정과 설계변수의 불확실성을 고려하는 신뢰성해석 과정으로 나눌 수 있다. 모멘트기반 신뢰성해석은 시스템의 통계적 모멘트를 이용하여 신뢰도를 구하는 방법이다. 일반적으로 신뢰성해석은 통계적 모멘트의 값에 따라 피어슨 시스템을 통해 시스템의 확률밀도함수를 7 가지 형태로 분류하여 신뢰도를 구한다. 하지만 피어슨 시스템에서 타입 IV 분포의 경우에는 수식이 복잡하여 다루기 어려운 문제점이 있었다. 본 논문에서는 크리깅모델을 이용하여 피어슨 시스템의 단점을 개선한 신뢰성 해석기법을 크리깅모델을 이용하여 개발하고 이를 적용하여 신뢰성기반최적설계 방법을 제안하다. 피어슨 타입 IV 의 수학 및 공학예제에 대하여 신뢰성기반최적설계를 수행하고 이를 몬테카를로 시뮬레이션을 이용하여 정확성을 검증한다.