• Title/Summary/Keyword: RAW264.7cell

Search Result 1,347, Processing Time 0.037 seconds

Biological Activities in the Leaf Extract of Lythrum salicaria L. (털부처꽃 잎 추출물의 생리활성탐색)

  • Kim, Hee-Yeon;Lim, Sang-Hyun;Park, Min-Hee;Park, Yu-Hwa;Ham, Hun-Ju;Lee, Ki-Yun;Park, Dong-Sik;Kim, Kyung-Hee;Kim, Song-Mun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.6
    • /
    • pp.409-415
    • /
    • 2010
  • In this study, the bioactivities of ethanol (EELS) and water extract (WELS) from the leaf of Lythrum salicaria L. were investigated. In the anti-cancer activity, the growths of both human prostate cancer (DU145) and human colonic carcinoma cell (HT29) were inhibited up 60% by adding 10 mg/$m{\ell}$ of EELS. Anti-inflammatory activity of EELS and WELS have been evaluated on lipopolysaccharide (LPS) induced release of nitric oxide (NO) by the macrophage RAW 264.7 cells. EELS and WELS inhibited inflammatory by 57.3 and 46.9% in 10 mg/$m{\ell}$, respectively. In the anti-oxidative activity, $IC_{50}$ of DPPH radical scavenging activity was respectively 60.71 and $92.90\;{\mu}g/m{\ell}$ by EELS and WELS. In the anti-diabetic activity, $IC_{50}$ of ${\alpha}$-amylase inhibitory activity of EELS and WELS were respectively 5,250 and $5,020\;{\mu}g/m{\ell}$. $IC_{50}$ of ${\alpha}$-glucosidase inhibitory activity was 7.96 and $68.41\;{\mu}g/m{\ell}$ by EELS and WELS. In the anti-obesity, $IC_{50}$ of lipase inhibitory activity was 880 and $9,840\;{\mu}g/m{\ell}$ by EELS and WELS. Finally, EELS and WELS exhibited anti-oxidative, anti-inflammatory, anti-diabetic activity and anti-obesity. It suggests that Lythrum salicaria L. could be potentially used as a resource of bioactive materials for health functional foods.

Chemical Component Contents and Physiological Activity of Lythrum salicaria L. According to Plant Parts and Collected Time (털부처꽃의 채취부위 및 채취시기에 따른 일반성분 함량 및 생리활성)

  • Lee, Seung-Eun;Park, Chun-Geun;Kim, Sun-Lim;Soe, Jin-Sook;Kim, Geum-Soog;Lee, Jeong-Hoon;Park, Chung-Berm;Kim, Young-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.5
    • /
    • pp.298-304
    • /
    • 2010
  • For the investigation of possibility as a useful functional material, different parts of Lythrum salicaria L. harvested at four growth stages were studied in the aspect of bleeding characteristics, chemical composition and in vitro activity. Weights (g/plant) of L. salicaria plant parts were high in order to stem > leaf > flower > root at the best growth time. Crude lipids (3.59~4.30%) and crude proteins (14.7~23.5%) of L. salicaria leaves were the highest among the other plant parts showed from 0.08~3.54%, and 4.0~21.9%, respectively. Free sugars (2.9~4.2%) and crude ash (11.9~14.8) of leaves also showed the highest value. Free radical scavenging activities of L. salicaria root on 2,2-diphenyl-1-picrylhydrazyl showed from $43.5\;{\mu}g/m{\ell}$ to $47.6\;{\mu}g/m{\ell}$ as $IC_{50}$ which were followed by those of flower, leaf, and stem. Root of L. salicaria tested at $100\;{\mu}g/m{\ell}$ also showed the most efficient inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine macrophage RAW264.7 cells. Cell viability of the plant parts tested by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyl tetrazoliumbromide (MTT) assay was high in order to flower, leaf, root, and stem. Total phenol content measured as tannic acid equivalent showed the highest value in flower. In conclusion, among the plant parts, especially leaf of L. salicaria, was rich in the chemical components, and showed efficient antioxidant/inhibitory activity on free radical and NO production, and was expected to be a functional material candidate.

Antioxidant and Anti-Inflammatory Activity of Brachythecium populeum Extract (Brachythecium populeum 추출물의 항산화 및 항염효과)

  • Sang-Nam PARK;Ok Hee LEE
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.3
    • /
    • pp.174-183
    • /
    • 2023
  • Antioxidant, cytotoxic, and anti-inflammatory assays were conducted to determine the commercial viability of Brachythecium populeum. The antioxidant activity was assessed by performing the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. This was followed by the quantification of polyphenols and flavonoids. Results of the DPPH and ABTS assay showed that antioxidant activities of the ethanol extract of B. populeum were 3.7 and 3.6 times higher than water extract, respectively. The polyphenol concentration was also determined to be 4.1 times higher and the flavonoid concentration was 5.3 times higher than the water extract. The cell-based experiments, 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay and nitric oxide assay, were performed using RAW 264.7. Results of the MTT assay revealed that both extracts exerted no cytotoxicity on the cells (based on 80% viability). In the nitric oxide (NO) production inhibition experiment, inhibition of NO production was determined to be 15.42% more when exposed to ethanol extract as compared to water extract. Furthermore, the ethanol extract exerted greater inhibition of inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α production (9.39%, 11.87%, and 14.49% more, respectively) when compared to the water extract. Due to the good antioxidant activity and potential for inhibiting NO and inflammatory cytokine production, B. populeum ethanol extracts are prospective sources of anti-inflammatory compounds.

Altered Expression of Peroxiredoxin and Thioredoxin in Septic Animal Model (패혈증 동물 모델에서 Peroxiredoxin 및 Thioredoxin의 발현 변화)

  • Kim, Hyung-Jung;Chae, Ho-Zoon;Ahn, Chul-Min;Kim, Sung-Kyu;Lee, Won-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.4
    • /
    • pp.451-459
    • /
    • 1999
  • Background : In sepsis, excessive generation of reactive oxygen species plays key roles in the pathogenesis of acute lung injury. The serum antioxidants such as catalase and MnSOD are elevated in sepsis and considered as predictors of acute respiratory distress syndrome(ARDS) and prognostic factors of sepsis. Peroxiredoxin(Prx) has recently been known as an unique and major intracellular antioxidant. In this study, we evaluated the expression of Prx I and Prx II in mouse monocyte-macrophage cells(RAW 267.7) after treatment of oxidative stress and endotoxin and measured the amount of Prx I, Prx II and thioredoxin(Trx) in peritoneal and bronchoalveolar lavage fluid of septic animal model. Methods : Using immunoblot analysis with specific antibodies against Prx I, Prx II and Trx, we evaluated the distribution of Prx I and Prx II in human neutrophil, alveolar macrophage and red blood cell. We evaluated the expression of Prx I and Prx II in mouse monocyte-macrophage cells after treatment of $5\;{\mu}M$ menadione and $1\;{\mu}g/ml$ lipopolysaccharide(LPS) and measured the amount of Prx I, Prx II and Trx in peritoneal lavage fluid of intraperitoneal septic animals(septic animal model induced with intraperitoneal 6 mg/Kg LPS injection) and those in bronchoalveolar lavage fluid of intraperitoneal septic animals and intravenous septic animals(septic animal model induced with intravenous 5 mg/Kg LPS injection) and compared with the severity of lung inflammation. Results : The distribution of Prx I and Prx II were so different among human neutrophil, alveolar macrophage and red blood cell. The expression of Prx I in mouse monocyte-macrophage cells was increased after treatment of $5\;{\mu}M$ menadione and $1\;{\mu}g/ml$ lipopolysaccharide but that of Prx II was not increased. The amount of Prx I, Prx II and Trx were increased in peritoneal lavage fluid of intraperitoneal septic animals but were not increased in bronchoalveolar lavage fluid of intraperitoneal and intravenous septic animals regardless of the severity of lung inflammation. Conclusion : As intracellular antioxidant, the expression of Prx I is increased in mouse monocyte-macrophage cells after treatment of oxidative stress and endotoxin. The amount of Prx I, Prx II and Trx are increased in local inflammatory site but not increased in injured lung of septic animal model.

  • PDF

Splenocyte-mediated immune enhancing activity of Sargassum horneri extracts (괭생이 모자반 추출물의 비장세포 면역활성 증강 효과)

  • Kim, Dong-Sub;Sung, Nak-Yun;Han, In-Jun;Lee, Byung-Soo;Park, Sang-Yun;Nho, Eun Young;Eom, Ji;Kim, Geon;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.52 no.6
    • /
    • pp.515-528
    • /
    • 2019
  • Purpose: This study examined the immunological activity and optimized the mixture conditions of Sargassum horneri (S. horneri) extracts in vitro and in vivo models. Methods: S. horneri was extracted using three different methods: hot water extraction (HWE), 50% ethanol extraction (EE), and supercritical fluid extraction (SFE). Splenocyte proliferation and cytokine production (Interleukin-2 and Interferon-γ) were measured using a WST-1 assay and enzyme-linked immunosorbent assay, respectively. The levels of nitric oxide and T cell activation production were measured using a Griess assay and flow cytometry, respectively. The natural killer (NK) cell activity was determined using an EZ-LDH kit. Results: Among the three different types of extracts, HWE showed the highest levels of splenocyte proliferation and cytokine production in vitro. In the animal model, three different types of extracts were administrated for 14 days (once/day) at 50 and 100 mg/kg body weight. HWE and SFE showed a high level of splenocyte proliferation and cytokine production in the with and without mitogen-treated groups, whereas EE administration did not induce the splenocyte activation. When RAW264.7 macrophage cells were treated with different mixtures (HWE with 5, 10, 15, 20% of SFE) to determine the optimal mixture ratio of HWE and SFE, the levels of nitric oxide and cytokine production increased strongly in the HWE with 5% and 10% of SFE containing group. In the animal model, HWE with 5% and 10% of SFE mixture administration increased the levels of splenocyte proliferation, cytokine production, and activated CD4+ cell population significantly, with the highest level observed in the HWE with 5% of SFE group. Moreover, the NK cell activity was increased significantly in the HWE with 5% of SFE mixture-treated group compared to the control group. Conclusion: The optimal mixture condition of S. horneri with immune-enhancing activity is the HWE with 5% of SFE mixture. These results confirmed that the extracts of S. horneri and its mixtures are potential candidate materials for immune enhancement.

Sophora Flavescens Suppresses Degranulation and Pro-inflammatory Cytokines Production through the Inhibition of NF-${\kappa}B$ (p65) Activation in the RBL-2H3 cells

  • Lyu, Ji-Hyo;Park, Sang-Eun;Hong, Su-Hyun;Kim, Dong-Kyu;Ko, Woo-Shin;Hong, Sang-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.206-213
    • /
    • 2009
  • Sophora flavescens, as a traditional herbal medicine, has been used to treat with a variety of disesases, In previous reports, S. flavescens and sophoraflavanone G (a prenylated flavonoid from S. flavescens) inhibited cytokines productions in LPS-induced Raw 264.7 macrophages cells and BV2 microglial cells. We examined on the anti-allergic effect of S. flavescens on the PMA plus A23187-induced rat leukemia (RBL-2H3) cells. S. flavescens inhibited the release of $\beta$-hexosaminidase and productions and expressions of tumor necrosis factor (TNF)-$\alpha$, interleukin (IL)-4 and cyclooxygenase (COX)-2 in a dose-dependent manner on stimulated RBL-2H3 cells, however, S. flavescens not affect cell viability. The protein expression level of nuclear factor (NF)-${\kappa}B$ (p65) was decreased in the nucleus and suppressed the degradation of inhibitory protein $I{\kappa}B-{\alpha}$ protein, the activation of extracellular signal-regulated kinases (ERK) mitogen-activated protein kinase (MAPK) by S. flavescens. These results suggest that S. flavescens could be involved anti-allergic effect by control of $NF-{\kappa}B$ (p65) translocation into the nucleus through inhibition of $I{\kappa}B-{\alpha}$ degradation and suppression of pro-inflammatory cytokines expression.

Analysis for Compatibility of Daehwangmokdan-tang and Its Pharmacological Activities (대황목란탕(大黃牧丹湯)의 배오(配伍)분석과 그 약리활성)

  • Kim, Do Hoy;Yoon, Michung;Shin, Soon Shik
    • Herbal Formula Science
    • /
    • v.26 no.1
    • /
    • pp.81-102
    • /
    • 2018
  • Objectives : I analysed daehwangmokdan-tang's compatibility principle by the system of chief, deputy, assistant, and envoy and investigated pharmacological activities by categorizing with chemical components, molecular level, cellular level, animal level and human level based on Korean and Chinese studies for this formula. Methods : Daehwangmokdan-tang's compatibiltity principle was examined by the system of chief, deputy, assistant, and envoy. I looked into studies that presented in Korea from 1956 to 2016 about daehwangmokdan-tang through KOREA INSTITUTE OF ORIENTAL MEDICINE, Korean medicine information system (OASIS) and in Chinese for 20 years about daehwangmokdan-tang through China National Knowledge Infrastructure, CNKI. Then classify into chemical components, molecular level, cellular level, animal level and human level to analyse. Results : According to the system of chief, deputy, assistant, and envoy, chief herb is Rhei Radix et Rhizoma and Moutan Cortex, deputy herb is Natrii Sulfas and Persicae Semen, assistant and envoy herbs are Trichosanthis Semen. The amount of extraction of paeonol, total anthraquinone, and conjugated anthraquinone from daehwangmokdan-tang with the formulation of the system of chief, deputy, assistant, and envoy was the highest, and in the formulation of chief herb and deputy herb, the extraction amount of paeonol and conjugated anthraquinone was the lowest. With other formulations, the amount of extraction of total anthraquinone and conjugated anthraquinone was improved, although the degree was different. In particular, when it is blended with Persicae Semen as a deputy herb, the extraction amount of total anthraquinone and conjugated anthraquinone of Rhei Radix et Rhizoma as a chief herb is greatly increased, and the extraction amount of paeonol is rather different, but it is lowered. It was found that the amount of Mg Ca K Na in daehwangmokdan-tang was the highest. Pharmacological activities can be detected in inflammatory mediators and enzymes for molecular level. For cellular level, it can be determined in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell line. In mouse and rats for animal level and human level, in inflammatory diseases (acute appendicitis, acute pancreatitis, acute cholecystitis, acute abdominal disease, ect.), pharmacological activities was caught. Conclusions : From the above results, daehwangmokdan-tang is composed in line with the system of chief, deputy, assistant, and envoy, suggesting that there is certain rationality and scientific. Pharmacological activities of daehwangmokdan-tang are effective to anti-inflammation, improvement of sepsis, analgesic, muscle relaxation, and improvement of intestinal flora and its metabolites. Daehwangmokdan-tang is consistent with the action of diuresis and anti-inflammation in terms of the content of elements, suggesting that there is action of purging fire and removing blood stasis, defecation detoxification, cooling blood and clearing heat and activating blood and dispersing stasis.

Research of the Anti-inflammatory Effects of Forsythiae Fructus and Lonicerae Flos Ethanol Extracts (연교(連翹)와 금은화(金銀花) 에탄올 추출물의 항염증 효능 연구)

  • Ryu, Hyo-Kyung;Jung, Min-Jae;Choi, Yu-Jin;Yang, Seung-Jeong;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.33 no.3
    • /
    • pp.40-59
    • /
    • 2020
  • Objectives: The purpose of this study was to investigate the anti-inflammatory effects of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos in vitro, which has been frequently used in inflammatory diseases. Methods: In this experiment, the anti-inflammatory effects of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos were evaluated by checking the following substances of LPS-activated Raw264.7 cell: Prostaglandin E2 (PGE2), Nitric oxide (NO), Cyclooxygenase-2 (COX-2), inducible Nitric oxide synthase (iNOS), Interlukine-1β (IL-1β), Interlukine-6 (IL-6), Tumor necrosis factor-α (TNF-α), mitogen-activated protein kinase (MAPK), Inhibitor of kappa B-α (IκBα), Nuclear factor kappa B (NF-κB). And additionally measured reactive oxygen species (ROS) and free radicals to check the antioxidant effect of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos which affect inflammatory responses. Results: As a result of measuring anti-inflammatory efficacy, PGE2, NO, IL-1β, IL-6, TNF-α production amounts were reduced in the ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos groups compared with the control group, and decreased the amount of COX-2 mRNA, iNOS mRNA gene expression. Expression of MAPK (ERK, JNK, p38) pathway was decreased. Expression of IκBα was increased and NF-κB was decreased. It is demonstrated that ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos, by reducing NF-κB, regulate the expression of the inflammatory genes and reduce the inflammatory mediators. Ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos also decreased ROS production and free radicals, which shown to have antioxidant efficacy and influence anti-inflammatory effects. Conclusions: These data suggest that ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos can be used to treat various inflammatory diseases.

Study on Cosmeceutical Activities and Anti-inflammatory Activities of Magnolia biondii Extracts (신이화(辛夷花, Magnoliae Flos)추출물의 화장품약리활성 및 항염증효과에 관한 연구)

  • Kim, Young-Hun;Sung, Ji-Yeon;Seo, Kyo-Seong;Shin, Jae-Cheon;Kim, Byung-So;Yeum, Jeong-Hyun;Lee, Jin-Tae
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.730-735
    • /
    • 2012
  • Existing pharmaceutical studies show that Magnolia biondii is effective in treating rhinitis and in reducing cholesterol, given its endogenous, volatile ingredients. The study herein seeks to assess the cosmeceutical activities and anti-inflammatory activities of Magnolia biondii extracts for possible application as cosmetic ingredients. The cosmeceutical and anti-inflammatory activities were investigated using hydroxyl radical scavenging, superoxide dismutase (SOD)-like activity, xanthine oxidase (XO) inhibition, cell viability, nitric oxide (NO) inhibition, and inducible nitric oxide synthase (iNOS) expression by Western blotting. Magnolia biondii extracts were identified to have antioxidant activities in hydroxyl free radical scavenging, SOD-like activity, and XO inhibition. In testing the anti-inflammatory activities of the extracts, NO production was inhibited in a dose-dependent manner. Additionally, in a dose-dependent manner, the Magnolia biondii extracts were able to suppress iNOS expression in LPS-stimulated RAW 264.7 macrophage cells. From these results, Magnolia biondii showed adequate potential for application in cosmetic production and related industries as well as a functional material.

Anti-inflammatory and Immune Regulatory Effects of Aucklandia lappa Decne 70% Ethanol Extract (운목향 70% 에탄올 추출물의 항염증 및 면역조절에 대한 효과)

  • Kim, Min Sun;Kim, Nam Seok;Kwon, Jin;Kim, Ha Rim;Lee, Da Young;Oh, Mi Jin;Kim, Hong Jun;Lee, Chang Hyun;Oh, Chan Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.1
    • /
    • pp.8-18
    • /
    • 2018
  • Background: This present study was conducted to evaluate the anti-inflammatory and immune regulatory effects of Aucklandia lappa Decne (AL). Methods and Results: We measured cytotoxicity, nitric oxide (NO) content, mRNA expression (iNOS, IL-1${\alpha}$, IL-$1{\beta}$, and TNF-${\alpha}$), protein expression (iNOS, COX-2, and $I{\kappa}B$) and phagocytic activity in RAW264.7 cells. Male BALB/c mice were fed 100 mg/kg AL (Aucklandia lappa Decneon 70% ethanol extract) and 250 mg/kg AL for 4 weeks; thereafter, we observed B/T or $CD4^+/CD8^+$ lymphocyte subpopulation change, and expression patterns of $CD4^+$ and $CD8^+$ lymphocytes by immunohistochemical staining in mouse splenocytes and/or thymocytes. To determine the experimental concentration of AL, cell viability was measured by MTT assay and tested at $12.5{\mu}g/m{\ell}$ or less. AL inhibited the levels of NO, lymphokine production (IL-$1{\beta}$, and TNF-${\alpha}$), and mRNA (iNOS, IL-1${\alpha}$, IL-$1{\beta}$, and TNF-${\alpha}$) and protein (iNOS, and COX-2) expression. Additionally, the levels of $I{\kappa}B$, phagocytic activity, and splenic and thymic T lymphocytes, especially $T_H$ and $T_C$ cells were significantly increased in AL administered mice. The immuno-reactive density of $CD4^+$ and $CD8^+$ lymphocytes was stronger in AL groups than in the normal group. AL stimulated NO, iNOS, and COX-2, and regulated IL-1${\alpha}$, IL-$1{\beta}$, TNF-${\alpha}$, and $I{\kappa}B$ in macrophages treated with LPS (lipopolysaccharide). In addition, AL increased the phagocytic activity of macrophages and the immunity of mouse T ($T_H$, and $T_C$) cells. Conclusions: These results suggested that AL might show anti-inflammatory activity via the suppression of various inflammatory markers and immuno-regulatory activity.