Sophora Flavescens Suppresses Degranulation and Pro-inflammatory Cytokines Production through the Inhibition of NF-${\kappa}B$ (p65) Activation in the RBL-2H3 cells

  • Lyu, Ji-Hyo (Clinical Research Center of Oriental Medicine, Dongeui University) ;
  • Park, Sang-Eun (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University) ;
  • Hong, Su-Hyun (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University) ;
  • Kim, Dong-Kyu (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University) ;
  • Ko, Woo-Shin (Clinical Research Center of Oriental Medicine, Dongeui University) ;
  • Hong, Sang-Hoon (Clinical Research Center of Oriental Medicine, Dongeui University)
  • Published : 2009.02.25

Abstract

Sophora flavescens, as a traditional herbal medicine, has been used to treat with a variety of disesases, In previous reports, S. flavescens and sophoraflavanone G (a prenylated flavonoid from S. flavescens) inhibited cytokines productions in LPS-induced Raw 264.7 macrophages cells and BV2 microglial cells. We examined on the anti-allergic effect of S. flavescens on the PMA plus A23187-induced rat leukemia (RBL-2H3) cells. S. flavescens inhibited the release of $\beta$-hexosaminidase and productions and expressions of tumor necrosis factor (TNF)-$\alpha$, interleukin (IL)-4 and cyclooxygenase (COX)-2 in a dose-dependent manner on stimulated RBL-2H3 cells, however, S. flavescens not affect cell viability. The protein expression level of nuclear factor (NF)-${\kappa}B$ (p65) was decreased in the nucleus and suppressed the degradation of inhibitory protein $I{\kappa}B-{\alpha}$ protein, the activation of extracellular signal-regulated kinases (ERK) mitogen-activated protein kinase (MAPK) by S. flavescens. These results suggest that S. flavescens could be involved anti-allergic effect by control of $NF-{\kappa}B$ (p65) translocation into the nucleus through inhibition of $I{\kappa}B-{\alpha}$ degradation and suppression of pro-inflammatory cytokines expression.

본 연구는 RBL-2H3 세포에서 고삼의 NF-${\kappa}B$ (p65) 활성 억제를 통한 과립감소와 전염증성 시토카인 억제 효과에 관한 것으로 주요 내용은 다음과 같다. 본 연구에서는 PMA와 A23187로 유발된 흰쥐 백혈병(RBL-2H3) 세포에서 고삼의 항알레르기 효과에 대하여 알아보았다. 고삼은 투여량에 따라 $\beta$-hexosaminidase의 방출과 TNF-$\alpha$, IL-4, COX-2 등의 생성과 발현을 억제하였다. 실험결과 고삼은 $NF-{\kappa}B$ (p65)의 조절을 통하여 항알레르기 효과를 나타내었는데 이는 $I{\kappa}B-{\alpha}$ 저해의 억제와 항염증 시토카인 발현 억제와도 관계가 있다는 내용이다.

Keywords

References

  1. Abbas, A.K., Lichtman. A.H. Cellular and Molecular Immunology. Elsevier, Amsterdam. p 432, 2000
  2. Gurish, M.F., Austen, K.F. The diverse roles of mast cells. J Exp Med. 194: F1, 2001 https://doi.org/10.1084/jem.194.1.F1
  3. Abassi, Y.A., Jackson, J.A., Zhu, J., O'Connell, J., Wang, X., Xu, X. Label-free, real-time monitoring of IgE-mediated mast cell activation on microelectronic cell sensor arrays. J Immunol Methods. 292: 195-205, 2004 https://doi.org/10.1016/j.jim.2004.06.022
  4. Metcalfe, D.D., Baram, D., Mekori, Y.A. Mast cells. Physiol Rev. 77: 1033-1079, 1997 https://doi.org/10.1152/physrev.1997.77.4.1033
  5. Galli, S.J. New concepts about the mast cell. N Engl J Med. 328: 257-265, 1993 https://doi.org/10.1056/NEJM199301283280408
  6. Lorentz, A., Klopp, I., Gebhardt, T., Manns, M.P., Bischoff, S.C. Role of activator protein 1, nuclear factor-kappaB, and nuclear factor of activated T cells in IgE receptor-mediated cytokine expression in mature human mast cells. J Allergy Clin Immunol. 111: 1062-1068, 2003 https://doi.org/10.1067/mai.2003.1342
  7. Schwartz, L.B., Austen, K.F., Wasserman, S.I. Immunologic release of beta-hexosaminidase and beta-glucuronnidase from purified rat serosal mast cells. J Immunol. 123: 1445-1450, 1979
  8. Ring, J., Behrendt, H. Anaphylaxis and anaphylactoid reactions. Classification and pathophysiology. Clin Rev Allergy Immunol. 17: 389-399, 1999
  9. Kim, S.H., Kim, S.A., Park, M.K., Kim, S.H., Park, Y.D., Na, H.J., Kim, H.M., Shin, M.K., Ahn, K.S. Paeonol inhibits anaphylaxic reaction by regulating histamine and TNF-$\alpha$. International Immunopharmacology 4: 279-287, 2004 https://doi.org/10.1016/j.intimp.2003.12.013
  10. romwell, O., Hamid, Q., Corrigan, C.J., Barkans, J., Meng, Q., Collins, P.D., Kay, A.B. Expression and generation of interleukin-8, IL-6 and granulocyte-macrophage colony-stimulating factor by bronchial epithelial cells and enhancement by IL-1 beta and tumour necrosis factor-alpha. Immunology 77(3):330-337, 1992
  11. Kwon, O.J., Au, B.T., Collins, P.D., Mak, J.C., Robbins, R.R., Chung, K.F., Barnes, P.J. Tumor necrosis factor-induced interleukin-8 expression in cultured human airway epithelial cells. Am J Physiol. 267(4):L398-L405, 1994
  12. Choi, J.J., Park, B.K., Song, G.Y., Kim, J.S., Kim, J.H., Kim, D.H., Jin, M.R. Establishment of an in vitro test system to evaluate the down-regulatory activities of natural products on IL-4. Arch Pharm Res. 30(9):1102-1110, 2007 https://doi.org/10.1007/BF02980244
  13. Funk, C.D., Funk, L.B., Kennedy, M.E., Pong, A.S., Fitzgerald, G.A. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J. 5(9):2304-2312, 1991 https://doi.org/10.1096/fasebj.5.9.1907252
  14. Hinz, B., Brune, K. Cyclooxygenase-2-10 years later. J Pharmacol Exp Ther. 300(2):367-375, 2002 https://doi.org/10.1124/jpet.300.2.367
  15. Prescott, S.M., Fitzpatrick, F.A. Cyclooxygenase-2 and carcinogenesis. Biochim Biophys Acta. 1470(2):M69-M78, 2000
  16. Kim, I.T., Park, Y.M., Won, J.H., Jung, H.J., Park, H.J., Choi, J.W., Lee, K.T. Methanol extract of Xanthium strumarium L. possesses anti-inflammatory and anti-nociceptive activities. Biol Pharm Bull. 28(1):94-100, 2005 https://doi.org/10.1248/bpb.28.94
  17. Farrow, B., Evers, B.M. Inflammation and the development of pancreatic cancer. Surg Oncol. 10(2):153-169, 2002 https://doi.org/10.1016/S0960-7404(02)00015-4
  18. Baeuerie, P.A., Henkel, T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 12: 141-179, 1994 https://doi.org/10.1146/annurev.iy.12.040194.001041
  19. Beg, A.A., Finco, T.S., Nantermet, P.V., Baldwin, Jr., A.S. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. Mol Cell Biol. 13(6):3301-3310, 1993 https://doi.org/10.1128/MCB.13.6.3301
  20. Palombella, V., Rando, O., Goldberg, A., Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5):773-785, 1994 https://doi.org/10.1016/S0092-8674(94)90482-0
  21. Moon, P.D., Lee, B.H., Jeong, H.J., An, H.J., Park, S.J., Kim, H.R., Ko, S.G., Um, J.Y., Hong, S.H., Kim, H.M. Use of scopoletin to inhibit the production of inflammatory cytokines through inhibition of the I$\kappa$B/NF-$\kappa$B signal cascade in the human mast cell line HMC-1. Eur J Pharmacol. 555(2-3):218-225, 2007 https://doi.org/10.1016/j.ejphar.2006.10.021
  22. Waetzig, V., Czeloth, K., Hidding, U., Mielke, K., Kanzow, M., Brecht, S., Goetz, M., Lucius, R., Herdegen, T., Hanisch, U.K. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50(3):235-246, 2005 https://doi.org/10.1002/glia.20173
  23. Kim, S.H., Park, H.H., Lee, S.Y., Jun, C.D., Choi, B.J., Kim, S.Y., Kim, S.H., Kim, D.K., Park, J.S., Chae, B.S., Shin, T.Y. The anti-anaphylactic effect of the gall of Rhus javanica is mediated through inhibition of histamine release and inflammatory cytokine secretion. International Immunopharmacology 5: 1820-1829, 2005 https://doi.org/10.1016/j.intimp.2005.06.007
  24. Kim, D.W., Chi, Y.J., Son, K.H., Chang, H.W., Kim, J.S., Kang, S.S., Kim, H.P. Effecs of Sophoraflavanone G, a prenylated flavonoid from Sophora flavescens, on cyclooxygenase-2 and in vivo inflammatory response. Arch Pharm Res. 25(3):329-335, 2002 https://doi.org/10.1007/BF02976635
  25. Jung, K.H., Kim, S.C., Han, M.Y., Park, H.J. ERK mediated suppressive effects of Sophora flavescens on Tnf alpha production in BV2 microglial cells. Kor J Herbology. 22(2):147-153, 2007
  26. Skehan, P. Assays of cell growth and cytotoxicity. In: Studzinski, G.P. (Ed.), Cell Growth and Apoptosis. Oxford University press, New York. p 180, 1998
  27. Van Reijsen, F.C., Bruijnzeel-Koomen, C.A., Kalthoff, F.S., Maggi, E., Romagnani, S., Westland, J.K., Mudde, G.C. Skin-derived aeroallergen-specific T-cell clones of Th2 phenotype in patients with atopic dermatitis. J Allergy Clin Immunol. 90(2):184-193, 1992 https://doi.org/10.1016/0091-6749(92)90070-I
  28. Robinson, D.S., Hamid, Q., Ying, S., Tsicopoulos, A., Barkans, J., Bentley, A.M., Corrigan, C., Durham, S.R., Kay, A.B. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 326(5):298-304, 1992 https://doi.org/10.1056/NEJM199201303260504
  29. Lee, J.S., Kim, I.S., Kim, J.H., Kim, J.S., Kim, D.H., Yun, C.Y. Suppressive effects of Houttuynia cordata Thunb (Saururaceae) extract on Th2 immune response. J Ethnopharmacol. 117(1):34-40, 2008 https://doi.org/10.1016/j.jep.2008.01.013
  30. Kemp, S.F., Lockey, R.F. Anaphylaxis: a review of causes and mechanisms. J Allergy Clin Immunol. 110(3):341-348, 2002 https://doi.org/10.1067/mai.2002.126811
  31. Lee, J.H., Ko, N.Y., Kim, N.W., Mun, S.H., Kim, J.W., Her, E., Kim, B.K., Seo, D.W., Chang, H.W., Moon, T.C., Han, J.W., Kim, Y.M., Choi, W.S. Meliae cortex extract exhibits anti-allergic activity through the inhibition of Syk kinase in mast cells. Toxicol Appl Pharmacol. 220(3):227-234, 2007 https://doi.org/10.1016/j.taap.2006.10.034
  32. Matsuda, H., Wang, Q., Matsuhira, K., Nakamura, S., Yuan, D., Yoshikawa, M. Inhibitory effects of thunberginols A and B isolated from Hydrangeae Dulcis Folium on mRNA expression of cytokines and on activation of activator protein-1 in RBL-2H3 cells. Phytomedicine 15(3):177-184, 2008. https://doi.org/10.1016/j.phymed.2007.09.010
  33. Soto, E.O., Pecht, I. A monoclonal-antibody that inhibits secretion from rat basophilic leukemia cells and binds to a novel membrane component. J Immunol. 141: 4324-4332, 1988
  34. Pierini, L., Harris, N.T., Holowka, D., Baird, B. Evidence supporting a role for mirofilaments in regulating the coupling between pooly dissociable IgE-Fc$\epsilon$RI aggregates and downstream signaling pathways. Biochemistry 36: 7447-7456, 1997 https://doi.org/10.1021/bi9629642
  35. Aketani, S., Teshima, R., Umezawa, Y., Sawada, J. Correlation between cytosolic calcium concentration and degranulation in RBL-2H3 cells in the presence of various concentrations of antigen-specific IgEs. Immunol Lett. 75: 185-189, 2001 https://doi.org/10.1016/S0165-2478(00)00311-4
  36. Naal, R., Tabb, J., Holowka, D., Braird, B. In situ measurement of degranulation as a biosensor based on RBL-2H3 mast cells. Biosensors and Bioelectronics 20: 791-796, 2004 https://doi.org/10.1016/j.bios.2004.03.017
  37. Bradding, P., Roberts, J.A., Britten, K.M., Montefort, S., Djukanovic, R., Mueller, R., Heusser, C.H., Howarth, P.H., Holgate, S.T. Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol. 10(5):471-480, 1994 https://doi.org/10.1165/ajrcmb.10.5.8179909
  38. Brennan, F.M., Maini, R.N., Feldmann, M. Cytokine expression in chronic inflammatory disease. Br Med Bull. 51(2):368-384, 1995 https://doi.org/10.1093/oxfordjournals.bmb.a072967
  39. Paul, W.E. Interleukin-4: a prototypic immunoregulatory lymphokine. Blood 77: 1859-1870, 1991
  40. Kong, G., Kim, E.K., Kim, W.S., Lee, K.T., Lee, Y.W., Lee, J.K., Paik, S.W., Rhee, J.C. Role of cyclooxygenase-2 and inducible nitric oxide synthase in pancreatic cancer. J Gastroenterol Hepatol. 17(8):914-921, 2002 https://doi.org/10.1046/j.1440-1746.2002.02829.x
  41. Kim, S.J., Jeong, H.J., Choi, I.Y., Lee, K.M., Park, R.K., Hong, S.H., Kim, H.M. Cyclooxygenase-2 inhibitor SC-236 [4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1- pyrazol-1-l] benzenesulfonamide] suppresses nuclear factor-kappaB activation and phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and c-Jun N-terminal kinase in human mast cell line cells. J Pharmacol Exp Ther. 314(1):27-34, 2005 https://doi.org/10.1124/jpet.104.082792
  42. Jung, Y.J., Isaacs, J.S., Lee, S., Trepel, J., Neckers, L. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 17(14):2115-2117, 2003 https://doi.org/10.1096/fj.03-0329fje
  43. Davis, R.J. Transcriptional regulation by MAP kinases. Mol Reprod Dev. 42(4):459-467, 1995 https://doi.org/10.1002/mrd.1080420414
  44. Treisman, R. Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol. 8(2):205-215, 1996 https://doi.org/10.1016/S0955-0674(96)80067-6
  45. Hutter, D., Chen, P., Barnes, J., Liu, Y. Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation. Biochem J. 1: 155-163, 2000
  46. Guan, Z., Buckman, S.Y., Pentland, A.P., Templeton, D.J., Morrison, A.R. Induction of cyclooxygenase-2 by the activated MEKK $\rightarrow$SEK1/MKK4$\rightarrow$p38 mitogen-activated protein kinase pathway. J Biol Chem. 273(21):12901-12908, 1998 https://doi.org/10.1074/jbc.273.21.12901