• 제목/요약/키워드: RAW 264.7 Macrophages

Search Result 920, Processing Time 0.029 seconds

Protective Effect of Paulownia tomentosa Fruits in an Experimental Animal Model of Acute Lung Injury

  • Kim, Seong-Man;Ryu, Hyung Won;Kwon, Ok-Kyoung;Min, Jae-Hong;Park, Jin-Mi;Kim, Doo-Young;Oh, Sei-Ryang;Lee, Seung Jin;Ahn, Kyung-Seop;Lee, Jae-Won
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.310-318
    • /
    • 2022
  • The fruits of Paulownia tomentosa (Thunb.) (PT) Steud. have been reported to exert a variety of biological activities. A previous study confirmed that compounds isolated from PT fruits (PTF) exerted anti-inflammatory effects on TNF-α-stimulated airway epithelial cells. However, there is no report on the protective effects of PTF on acute lung injury (ALI). Here, we examined the ameliorative effects of PTF in an experimental animal model of lipopolysaccharide (LPS)-induced ALI. In ALI mice, increased levels of inflammatory cell influx were confirmed in the lungs of mice, and an increase of microphage numbers, TNF-α, IL-6 and MCP-1 production and protein content were detected in mouse bronchoalveolar lavage fluid. However, these increases were significantly reversed with PTF pretreatment. In addition, PTF inhibited the increased expression of iNOS and COX-2 in the lungs of ALI mice. Furthermore, the upregulation of MAPK and NF-κB activation was decreased in the lungs of ALI mice by PTF. In the in vitro experiment, PTF pretreatment exerted an anti-inflammatory effect by inhibiting the secretion of nitric oxide, TNF-α and IL-6 in LPS-stimulated RAW264.7 macrophages. Collectively, these results indicated that PTF has ameliorative effects on airway inflammation in an experimental animal model of ALI.

Glycine max Fermented by a Novel Probiotic, Bifidobacterium animalis subsp. lactis LDTM 8102, Increases Immuno-Modulatory Function

  • Kim, Jae Hwan;Jeong, Minju;Doo, Eun-Hee;Koo, Young Tae;Lee, Seon Joo;Jang, Ji Won;Park, Jung Han Yoon;Huh, Chul Sung;Byun, Sanguine;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1146-1153
    • /
    • 2022
  • Many probiotic species have been used as a fermentation starter for manufacturing functional food materials. We have isolated Bifidobacterium animalis subsp. lactis LDTM 8102 from the feces of infants as a novel strain for fermentation. While Glycine max has been known to display various bioactivities including anti-oxidant, anti-skin aging, and anti-cancer effects, the immune-modulatory effect of Glycine max has not been reported. In the current study, we have discovered that the extract of Glycine max fermented with B. animalis subsp. lactis LDTM 8102 (GFB 8102), could exert immuno-modulatory properties. GFB 8102 treatment increased the production of immune-stimulatory cytokines in RAW264.7 macrophages without any noticeable cytotoxicity. Analysis of the molecular mechanism revealed that GFB 8102 could upregulate MAPK2K and MAPK signaling pathways including ERK, p38, and JNK. GFB 8102 also increased the proliferation rate of splenocytes isolated from mice. In an animal study, administration of GFB 8102 partially recovered cyclophosphamide-mediated reduction in thymus and spleen weight. Moreover, splenocytes from the GFB 8102-treated group exhibited increased TNF-α, IL-6, and IL-1β production. Based on these findings, GFB 8102 could be a promising functional food material for enhancing immune function.

Carbon Source Affects Synthesis, Structures, and Activities of Mycelial Polysaccharides from Medicinal Fungus Inonotus obliquus

  • He, Huihui;Li, Yingying;Fang, Mingyue;Li, Tiantian;Liang, Yunxiang;Mei, Yuxia
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.855-866
    • /
    • 2021
  • The effects of various carbon sources on mycelial growth and polysaccharide synthesis of the medicinal fungus Inonotus obliquus in liquid fermentation were investigated. After 12-d fermentation, mycelial biomass, polysaccharide yield, and polysaccharide content were significantly higher in Glc+Lac group (glucose and lactose used as combined carbon source) than in other groups. Crude polysaccharides (CIOPs) and the derivative neutral polysaccharides (NIOPs) were obtained from mycelia fermented using Glc, fructose (Fru), Lac, or Glc+Lac as carbon source. Molecular weights of four NIOPs (termed as NIOPG, NIOPF, NIOPL, and NIOPGL) were respectively 780.90, 1105.00, 25.32, and 10.28 kDa. Monosaccharide composition analyses revealed that NIOPs were composed of Glc, Man, and Gal at different molar ratios. The NIOPs were classified as α-type heteropolysaccharides with 1→2, 1→3, 1→4, 1→6 linkages in differing proportions. In in vitro cell proliferation assays, viability of RAW264.7 macrophages was more strongly enhanced by NIOPL or NIOPGL than by NIOPG or NIOPF, and proliferation of HeLa or S180 tumor cells was more strongly inhibited by NIOPG or NIOPGL than by NIOPF or NIOPL, indicating that immune-enhancing and anti-tumor activities of NIOPs were substantially affected by carbon source. qRT-PCR analysis revealed that expression levels of phosphoglucose isomerase (PGI) and UDP-Glc 4-epimerase (UGE), two key genes involved in polysaccharide synthesis, varied depending on carbon source. Our findings, taken together, clearly demonstrate that carbon source plays an essential role in determining structure and activities of I. obliquus polysaccharides by regulating expression of key genes in polysaccharide biosynthetic pathway.

Inhibitory effect of broccoli leaf extract on PGE2 production by NF-κB inhibition (NF-κB 저해를 통한 브로콜리 잎 추출물의 PGE2 저해효과)

  • Park, Sook Jahr;An, Iseul;Noh, Gyu Pyo;Yoo, Byung Hyuk;Lee, Jong Rok
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.117-124
    • /
    • 2019
  • Objective : Broccoli is edible green plant that has a wide variety of health benefits including cancer prevention and cholesterol reduction. However, leaves of broccoli are not eaten and are mostly left as waste. This study was conducted to evaluate the effects of the broccoli leaf extract (BLE) on prostaglandin E2 (PGE2) production related to nuclear factor kappa B (NF-κB) signaling in lipopolysaccharide (LPS)-activated macrophages. Methods : BLE was prepared by extracting dried leaf with ethanol. Cell viability was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PGE2 and inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Expression level of each protein was monitored by Western blot analysis. Results : In LPS-activated Raw264.7 cells, PGE2 release into culture medium was dramatically enhanced compared to control cells. However, increased PGE2 was attenuated dose-dependently by treatment with BLE. Inhibition of PGE2 production by BLE was due to the suppression of cyclooxygenase-2 (COX-2) expression determined by Western blot analysis. BLE also inhibited the production of inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Inhibition at PGE2 and cytokine was mediated from inhibition of nuclear translocation of NF-κB due to the repression of inhibitory kappa B alpha (IκBα) phosphorylation and degradation. Conclusion : This study showed that BLE exerted inhibitory activities against PGE2, which is critical for the initiation and resolution of inflammatory responses, and that inhibition of PGE2 was mediated by suppression of NF-κB signaling. These results suggest that the waste broccoli leaves could be used for controlling inflammation.

Changes in Physiological Activity of Gardenia Fructus by Roasting Treatment

  • Park, Ji Sun;Choi, Ha Kyoung;Kang, Jeong Eun;Shin, Yong Wook;Lee, In Ah
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.4
    • /
    • pp.455-464
    • /
    • 2020
  • Background and objective: This study was conducted to examine changes in the composition and physiological activity of Gardenia Fructus after being roasted. Methods: The antioxidant, anti-inflammatory and antibacterial activity of Gardenia Fructus was evaluated using the Gardenia Fructus (GF) and roasted Gardenia Fructus (RGF) ethanol extracts, and their components were analyzed through HPLC. Results: As a result, it was confirmed that the content of gardenoside and geniposide decreased and the content of genipin increased when GF was roasted. The total content of polyphenols was 54.5 ± 2.18 mg gallic acid equivalents (GAE) per gram of the GF extract and 69.6 ± 0.36 mg GAE per gram of the RGF extract. As a result of evaluating 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, both the GF and RGF extracts showed the similar activity to ascorbic acid at the concentrations of 1 mg/mL or higher. In RAW 264.7 macrophages stimulated by lipopolysaccharides (LPS), the RGF extract showed a higher effect of reducing NO production, and significantly reduced the expression of an inflammatory cytokine, IL-6. As a result of evaluating the antimicrobial activity, the RGF extract showed higher antimicrobial activity against Escherichia coli and Bacillus subtilis. In the dextran sulfate sodium salt (DSS) induced inflammatory bowel disease mouse model, the RGF extract reduced the weight of the spleen, and both the GF and RGF extracts reduced the number of bacteria in the colon. Conclusion: Therefore, it has been confirmed through this study that roasting at a high temperature changes the main components of the GF extract and increases its biological activity. The RGF extract is expected to be used as a natural material with antioxidant, anti-inflammatory and antibacterial effects.

Effects of different calcium-silicate based materials on fracture resistance of immature permanent teeth with replacement root resorption and osteoclastogenesis

  • Gabriela Leite de Souza;Gabrielle Alves Nunes Freitas;Maria Tereza Hordones Ribeiro;Nelly Xiomara Alvarado Lemus;Carlos Jose Soares;Camilla Christian Gomes Moura
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.21.1-21.15
    • /
    • 2023
  • Objectives: This study evaluated the effects of Biodentine (BD), Bio-C Repair (BCR), and mineral trioxide aggregate (MTA) plug on the fracture resistance of simulated immature teeth with replacement root resorption (RRR) and in vitro-induced osteoclastogenesis. Materials and Methods: Sixty bovine incisors simulating immature teeth and RRR were divided into 5 groups: BD and BCR groups, with samples completely filled with the respective materials; MTA group, which utilized a 3-mm apical MTA plug; RRR group, which received no root canal filling; and normal periodontal ligament (PL) group, which had no RRR and no root canal filling. All the teeth underwent cycling loading, and compression strength testing was performed using a universal testing machine. RAW 264.7 macrophages were treated with 1:16 extracts of BD, BCR, and MTA containing receptor activator of nuclear factor-kappa B ligand (RANKL) for 5 days. RANKL-induced osteoclast differentiation was assessed by staining with tartrate-resistant acid phosphatase. The fracture load and osteoclast number were analyzed using 1-way ANOVA and Tukey's test (α = 0.05). Results: No significant difference in fracture resistance was observed among the groups (p > 0.05). All materials similarly inhibited osteoclastogenesis (p > 0.05), except for BCR, which led to a lower percentage of osteoclasts than did MTA (p < 0.0001). Conclusions: The treatment options for non-vital immature teeth with RRR did not strengthen the teeth and promoted a similar resistance to fractures in all cases. BD, MTA, and BCR showed inhibitory effects on osteoclast differentiation, with BCR yielding improved results compared to the other materials.

6-Shogaol and 10-Shogaol Synergize Curcumin in Ameliorating Proinflammatory Mediators via the Modulation of TLR4/TRAF6/MAPK and NFκB Translocation

  • Xian Zhou;Ahmad Al-Khazaleh;Sualiha Afzal;Ming-Hui (Tim) Kao;Gerald Munch;Hans Wohlmuth;David Leach;Mitchell Low;Chun Guang Li
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.27-39
    • /
    • 2023
  • Extensive research supported the therapeutic potential of curcumin, a naturally occurring compound, as a promising cytokine-suppressive anti-inflammatory drug. This study aimed to investigate the synergistic anti-inflammatory and anti-cytokine activities by combining 6-shogaol and 10-shogaol to curcumin, and associated mechanisms in modulating lipopolysaccharides and interferon-γ-induced proinflammatory signaling pathways. Our results showed that the combination of 6-shogaol-10-shogaolcurcumin synergistically reduced the production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor and interlukin-6 in lipopolysaccharides and interferon-γ-induced RAW 264.7 and THP-1 cells assessed by the combination index model. 6-shogaol-10-shogaol-curcumin also showed greater inhibition of cytokine profiling compared to that of 6-shogaol-10-shogaol or curcumin alone. The synergistic anti-inflammatory activity was associated with supressed NFκB translocation and downregulated TLR4-TRAF6-MAPK signaling pathway. In addition, SC also inhibited microRNA-155 expression which may be relevant to the inhibited NFκB translocation. Although 6-shogaol-10-shogaol-curcumin synergistically increased Nrf2 activity, the anti-inflammatory mechanism appeared to be independent from the induction of Nrf2. 6-shogaol-10-shogaol-curcumin provides a more potent therapeutic agent than curcumin alone in synergistically inhibiting lipopolysaccharides and interferon-γ induced proinflammatory mediators and cytokine array in macrophages. The action was mediated by the downregulation of TLR4/TRAF6/MAPK pathway and NFκB translocation.

Effect of Cold Plasma on Total Polyphenol Content and Anti-Inflammatory Activities of Peanut (Arachis hypogaea L.) Hull

  • Mihyang Kim;Yeo Ul Cho;Narae Han;Jin Young Lee;Yu-Young Lee;Moon Seok Kang;Hyun-Joo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.330-330
    • /
    • 2022
  • In recent studies, cold plasma has been used to induce exudation of polyphenols and flavonoids from food materials, leading to enhancement of functional properties. And it is known that polyphenols interact with inflammation related metabolism. The objectives of this study were to investigate the effects of cold plasma treatments on the increase of total phenolic content (TPC), total flavonoid content (TFC), and anti-inflammatory activities of 'Sinpalkwang' peanut (Arachis hypogaea L.) hull. Plasma treatments were carried out using a dielectric barrier discharge gas exchange system at different radicals and temperatures (O3-25℃, O3-150℃, NOx-150℃). Significant differences in TPC, TFC, and inflammatory mediator such as nitric oxide (NO) and tumor necrosis factor a (TNF-α) in lipopolysaccharide stimulated Raw 264.7 macrophages were observed between treated and non-treated peanut hull samples (p < 0.001). Cold plasma treated samples showed higher content (TPC: 2.87-2.93 mg/g sample, TFC: 0.96-0.98 mg/g sample) than non-treated sample (TPC: 2.47 mg/g sample, TFC: 0.78 mg/g sample). Cold plasma treated samples showed lower content of NO (3.3-5.0 uM) and TNF-α (141.4-162.2 ng/mL) than non-treated sample (NO: 11.1 uM, TNF-α: 210.2 ng/mL). This study suggests that cold plasma has potential to improve functionalities of food materials and that cold plasma treated peanut hull can be used as immune enhancing materials.

  • PDF

Anti-inflammatory and Anti-allergic Effects of Herbal Extracts on Atopic Dermatitis ( Part II ) (약용식물 추출물의 아토피성 피부염에 대한 항염증 및 항알레르기 효과 (제 2 보))

  • Rang, Moon-Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.173-182
    • /
    • 2013
  • Atopic dermatitis is a chronic, relapsing inflammatory skin disease associated with dysfunction of skin barrier and cutaneous hyper-reactivity to environmental triggers. In the previous study, cytotoxicity, antioxidant, anti-inflammatory and anti-allergic activities were investigated for various herbal extracts such as Aloe vera L. (AV), Viola mandshurica W. Becker (VM), Punica granatum L. (PG), and Dendrobium nobile L. (DN) in order to develop effective therapeutic herbal extracts for atopic dermatitis, In this study, anti-inflammatory activities of these herb extracts in lipopolysaccharide (LPS)-induced macrophage RAW264.7 cells were further examined to find the underlying molecular mechanisms. The RT-PCR (reverse transcription polymerase chain reaction) analysis showed that PG, DN and AV inhibited effectively the gene expression of pro-inflammatory cytokines IL-6 and IL-$1{\beta}$ in LPS-stimulated macrophages, while VM did not. The transfection and luciferase analysis exhibited that all herbal extracts hindered the activation of transcription nuclear factor kappa B (NF-${\kappa}B$). The western blot analysis indicated that AV blocked the activation of only JNK MAP (c-Jun N-terminal kinase mitogen-activated protein) kinase not p38 MAP kinase, while VM, PG and DN did not show the activation of both JNK and p38 MAP kinases. These results suggest that AV, VM, PG, and DN have anti-inflammatory activities and thus have the potential to reduce and alleviate the symptoms of atopic dermatitis.

Study of Anti-inflammatory Activity of 7 Herbal Prescription Effective for Sleep Disorders and Atopic Dermatitis (수면 장애 및 아토피피부염에 효과적인 7 가지 한약 처방의 항염증 활성 연구)

  • Choi, Min-Jin;Nguyen, Ly Thi Huong;Jeong, Jeonghwa;Park, Minyoung;Yoon, Joohee;Lee, Byung-Wook;Yang, In-Jun;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.2
    • /
    • pp.56-63
    • /
    • 2021
  • This study was conducted to find a candidate prescription with anti-inflammatory efficacy of 7 herbal prescriptions known to be effective in atopic dermatitis and sleep disorders in Korean medicine. The anti-inflammatory of the 7 herbal prescriptions extracts were evaluated by ELISA assay and Western blot assay. 7 herbal prescriptions, Seongyutang(SU), Danseontoetang(DST), Sotosajahwan(ST), Jisiljagyagsan(JJ), Seokchangpo(SCP), Wiryeongseon(WLS), Gogojohwan(GGJ) 30 % EtoH extract was used for in vitro experiments. In TNF-α + IFN-γ(TI) stimulated HaCaT cells, all 7 herbal prescriptions reduced TARC and MDC production, and JJ strongly reduced TARC and MDC production at 100 ㎍/ml concentration. SCP strongly reduced MDC production at 10 ㎍/ml and 100 ㎍/ml concentration. In addition, in substance P(SP)/CRH stimulated HMC-1 cells, JJ strongly inhibited VEGF production at both 10 and 100 ㎍/ml concentrations. In LPS/CRH stimulated Raw264.7 cells, all 7 herbal prescriptions significantly inhibited TNF-α. PMA + Ionomycin(PI)/CRH stimulated EL4 cells, SU significantly reduced IL-4 production at both concentrations of 10 and 100 ㎍/ml. WLS significantly reduced IL-17 production at both concentrations of 10 and 100㎍/ml. This suggests that 7 herbal prescriptions have anti-inflammatory effects by reducing inflammatory cytokines in keratinocytes, mast cells and macrophages caused by inflammation. Therefore, it is expected that 7 herbal prescriptions that are effective for sleep disorders and atopic dermatitis can be used as therapeutic materials for sleep disorders and diseases associated with atopic dermatitis.