• Title/Summary/Keyword: RAPD-SCAR marker

Search Result 32, Processing Time 0.037 seconds

Development of a SCAR Marker for Sex Identification in Asparagus

  • Kim, Seong-Cheol;Jung, Yong-Hwan;Seong, Ki-Cheol;Chun, Seung-Jong;Kim, Chun Hwan;Lim, Chan Kyu;Joa, Jae-Ho;Lee, Dong-Sun
    • Korean Journal of Plant Resources
    • /
    • v.27 no.3
    • /
    • pp.236-241
    • /
    • 2014
  • A sex-linked random amplified polymorphic DNA (RAPD) marker was identified from Asparagus officinalis L. and was converted into a sequence-characterized amplified regions (SCAR) marker for the large-scale screening of male and female plants. A total of 100 arbitrary decamer oligonucleotide primers were used for the RAPD analysis. Among them, the primer UBC347 amplified one female-specific 400 base pair DNA. Subsequently, the amplified RAPD fragment was cloned and sequenced. The fragment was abundant in AT and shared sequence homology with retrotransposon elements. On the basis of the sequence obtained, a pair of SCAR primer was designed. The amplification product, named F400, was the same size as the respective RAPD fragment from which it was derived. The F400 SCAR marker resulted to be female-specific in the three asparagus varieties tested in this study. This SCAR marker can be used for an early and rapid identification of female and male plants during breeding programs of asparagus.

Genetic Diversity Analysis of the Cheju Horse Using Random Amplified Polymorphic DNAs (PCR-RAPD를 이용한 제주말의 유전적 다양성분석)

  • Cho, Byung-Wook;Lee, Kil-Wang
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.521-524
    • /
    • 2004
  • This experiment was carried out to analyze genetic characteristics and to develop the breed specific DNA marker for Cheju-native horse. If this marker contains high repetitive sequences, it is possible to convert a RAPD marker of interest into a single-locus PCR marker called a sequence characterized amplified region(SCAR). Twenty six Cheju-native horse and Fifty thoroughbred genomic DNA were pooled and PCR. were accomplished using 800 random primers. Comparing the pooled DNA from Cheju-native horse and thoroughbred, we found 9 primers which identified markers present in the pooled DNA from breed but absent in the other breed. Among 9 random primers, 6 primers were thoroughbred specific and 3 primers were Cheju-native horse specific. Testing individual horse revealed that 5 marker showed the similar band pattern between Cheju-native horse and Thoroughbred. However, 4 marker were wholly absent in breed while present in the other breed. UBC $126_{3500bp}$, UBC $162_{500bp}$, and UBC $244_{1200bp}$ was detected only Thoroughbred and UBC $562_{560bp}$was detected Cheju-native horse, respectively. After determining of the cloned breed-specific fragment sequence, we designed the SCAR-primers and carried out PCR. Compared to random primer, RAPD-SCAR primer didn't show significantly higher specific band. However, RAPD analysis is useful for genetic characterization of Cheju-native horse.

RAPD marker를 이용한 참돔 집단의 유전적 특성 분석

  • 장요순;노충환;홍경표;명정구;김종만
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-34
    • /
    • 2003
  • 한국산 선발계통 및 일본산 양식계통과 이들 두 계통간 잡종 참돔 집단의 유전적 특성을 분석하기 위하여, RAPD (Random Amplified Polymorphic DNA) marker를 탐색하였다. 10개의 염기로 이루어진 200개의 random primer 분석을 통하여 polymorphic pattern을 나타내는 23개의 random primer를 선발하였으며, 각 primer의 재현성을 확인하였다. 이들 중 OPA-11 primer는 크기가 각각 600 bp, 650 bp 및 750 bp 인 3개의 DNA 단편에 의하여 4개의 genotype을 나타냈으며, 각 genotype의 빈도는 집단간차이를 보였고, 한국산 선발계통 집단에서는 4개의 genotype이 모두 발견되는 반면, 일본산 양식계통 및 일본산 양식계통을 포함한 교배집단에서는 특정 genotype만 발견되었다. OPA-11 primer 유래의 polymorphic DNA 단편을 cloning하고 염기서열을 결정하였으며, SCAR (Sequence Characterized Amplified Region) primer를 제작하고 분석하였다. 본 연구는 참돔집단의 유전적 특성 파악 및 집단 구별에 RAPD marker를 활용하였으며, 참돔 육종시 형질 및 기능관련 DNA marker 탐색에 적용하기 위하여, 이후의 연구에서는 SCAR과 RFLP 분석에 RAPD marker를 이용하여 100% 정확도를 갖는 RFLP maker를 찾고, MAS (Marker-Assisted Selection)에 적용하고자 한다.

  • PDF

Development of SCAR markers in Creeping bentgrass(Agrostis palustrics Huds.) cultivars (Creeping bentgrass(Agrostis palustrics Huds.) 품종별 SCAR markers 개발)

  • Jang, Duk-Hwan;Jung, Seung-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.307-316
    • /
    • 2009
  • Creeping bentgrass (Agrostis palustrics Huds.) is cool season turfgrasse that is used for putting green in golf course. Creeping bentgrass cultivars are difficult to distinguish with the same species because of similar morphological characters and low level of genetic diversity. The SCAR markers using the specific DNA can be useful for differentiating between creeping bentgrass cultivars. Five RAPD primers were used for specific band detection among creeping bentgrass cultivars, penncross, penn A-4, crenshaw, L-93, CY-2, T-1. The pairs of SCAR primers for six cultivers were designed by the specific sequences of the bands that amplified by RAPD. Three of the six SCAR primers could not make the use as SCAR primers because the specific false bands were detected in all cultivars. The remaining pairs of SCAR primer, CY850F/R, T700F/R, L2900F/R, amplified the specific band at expected size for three cultivars, CY-2, T-1, L-93, respectively. The CY850F/R primer amplified a band of 850bp in CY-2 cultivar, the T700F/R primer amplified a band of 700bp in T-1 cultivar, and the L2900F/R primer amplified a band of 2.9kb in L-93 cultivar. In this study we developed the SCAR markers to identify and distinguish the inerseeded creeping bentgrass cultivars in a golf course green.

Development of strain-specific SCAR marker for selection of Pleurotus eryngii strains with higher β-glucan (베타글루칸 함량이 높은 큰느타리버섯 선발을 위한 SCAR marker 개발)

  • Kim, Su Cheol;Kim, Hye Soo;Cho, Yong Un;Ryu, Jae-San;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.79-83
    • /
    • 2015
  • In this study, SCAR marker that differentiates Pleurotus eryngii strains with higher ${\beta}$-glucan from control strain was developed. Genomic DNAs of 9 control strains of Pleurotus eryngii and 9 Pleurotus eryngii strains with higher ${\beta}$-glucan were analyzed by bulked segregant analysis (BSA) using randomly amplified polymorphic DNA (RAPD). One-hundred twenty RAPD primers were screened on bulked DNA samples and a unique DNA fragment with the size of 91 bp was yielded by OP-R03 primer from the Pleurotus eryngii strains with higher ${\beta}$-glucan. A sequence characterized amplified region (SCAR) marker, designated as OP-R03-1-F and OP-R03-1-R, was designed on the basis of the determined sequence. The PCR analysis with the OP-R03-1 primer showed that this SCAR marker can clearly distinguish the Pleurotus eryngii strains with higher ${\beta}$-glucan from the control strains.

Development of strain-specific SCAR marker for selection of Pleurotus eryngii strains adaptable to high-temperature (큰느타리버섯의 고온적응성 형질에 관련된 SCAR Marker 개발)

  • Kim, Su Cheol;Kim, Hye Soo;Park, So Yeon;Ryu, Jae-San;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.226-231
    • /
    • 2014
  • In this study, SCAR marker that differentiates Pleurotus eryngii strains adaptable to high-temperature from control strain was developed. Genomic DNAs of 7 control strains of Pleurotus eryngii and 7 Pleurotus eryngii strains adaptable to high-temperature were analyzed by bulked segregant analysis (BSA) using randomly amplified polymorphic DNA (RAPD). Onehundred twenty RAPD primers were screened on bulked DNA samples and a unique DNA fragment with the size of 385 bp was yielded by OP-A06 primer from the Pleurotus eryngii strains adaptable to high-temperature. A sequence characterized amplified region (SCAR) marker, designated as OP-A06-1-F and OP-A06-1-R, was designed on the basis of the determined sequence. The PCR analysis with the OP-A06-1 primer showed that this SCAR marker can clearly distinguish the Pleurotus eryngii strains adaptable to high-temperature from the control strains.

Development of Sequence Characterized Amplified Regions (SCAR) Showing for Cheju Native Horse (품종 특이성을 이용한 제주마 판별 표지인자 재발)

  • Cho Byung Wook
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.474-478
    • /
    • 2005
  • This study was conducted to analyze genetic characteristics and to develop the specific marker for Cheju native horse (Coo) at the level of sequence characterized amplified regions (SCARs). We collected blood samples from Cheju native horse and Thoroughbred horse (Th) and obtained genomic DNA from the blood of 50 individuals randomly selected within the breeds. Seven hundred primers were chosen randomly and were used to examin the polymorphism and 40 kinds of primers showed polymorphic RAPD band patterns between two breeds. Thirty primers of them showed horse specific bands. With the primer MG 30, amplified band of 2.0 kb showed the specificity to Cheju native horse (Cnh). Additionally MG 53 detected the thoroughbred horse (Th) specific markers at size of 2.3 kb. As the next, 2.3 kb band from MG 53 was checked with the all individuals from all the breeds of this study, and it maintained the reproducible breed specificity to thoroughbred horse (Th). With this results, 2.3 kb band was cloned into plasmid vector and sequenced bidirectionally from both ends of the cloned fragment. With the obtained sequences 10 nucleotide extended primers including the original arbitray primer were designed as a SCARs primer. Finally, the primer with extended sequence showed the reproducible breed differentiation pattern and it was possible to identify Cheju native horse (Cnh) from other breeds. The SCARs marker 2.3 kb from MG 53 could be used to identify Cheju native horse (Cnh) for not only registration but also horse breeding programe.

Development of a sequence-characterized amplified region (SCAR) marker for female off-season flowering detection in date palm (Phoenix dactylifera L.)

  • Lalita Kethirun;Puangpaka Umpunjun;Ngarmnij Chuenboonngarm;Unchera Viboonjun
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.190-199
    • /
    • 2023
  • Date palm (Phoenix dactylifera L.: Arecaceae) is a dioecious species where only female trees bear fruits. In their natural state, date palms produce dates once a year. However, in Thailand, some trees were observed to produce dates during the off-season, despite no variations in morphology. The availability of such off-season fruits can significantly increase their market value. Interestingly, most female off-season date palms investigated in this study were obtained through micropropagation. Hence, there is an urgent need for genetic markers to distinguish female offseason flowering plantlets within tissue culture systems. In this study, we aimed to develop random amplification of polymorphic DNA-sequence characterized amplified region (RAPD-SCAR) markers for the identification of female off-season flowering date palms cultivated in Thailand. A total of 160 random decamer primers were employed to screen for specific RAPD markers in off-season flowering male and female populations. Out of these, only one primer, OPN-02, generated distinct genomic DNA patterns in female off-season flowering (FOFdp) individuals compared to female seasonal flowering genotypes. Based on the RAPD-specific sequence, specific SCAR primers denoted as FOFdpF and FOFdpR were developed. These SCAR primers amplified a single 517-bp DNA fragment, predominantly found in off-season flowering populations, with an accuracy rate of 60%. These findings underscore the potential of SCAR marker technology for tracking offseason flowering in date palms. Notably, a BLAST analysis revealed a substantial similarity between the SCAR marker sequence and the transcript variant mRNA from Phoenix dactylifera encoding the SET DOMAIN GROUP 40 protein. In Arabidopsis, this protein is involved in the epigenetic regulation of flowering time. The genetic potential of the off-season flowering traits warrants further elucidation.

RAPD-SCAR Markers Linked to Medium-Leaf Zoysiagrass Ecotypes (한국잔디 중지 변이개체와 연관된 RAPD-SCAR 마커)

  • Chung, Sung Jin;Park, Su Jeong;Kim, Hun Joong;Yang, Geun-Mo;Choi, Joon-Soo;Oh, Chan-Jin;Jang, Deok-Hwan;Song, In-Ja;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.2 no.2
    • /
    • pp.191-197
    • /
    • 2013
  • Two medium-leaf ecotypes (CY6069, CY6097) belonging to one species (Zoysia japonica) of Korean lawngrasses were selected in sod production fields in Jang Seong, Korea. They were reported to have distinct morphological and growth rate characteristics different from the preferred medium-leaf type zoysiagrass in Korea. This study was conducted to define further the genotypic difference at the molecular level and to develop DNA marker based on the specific DNA fragment. Polymorphic DNA fragments were first explored by using randomly amplified polymorphic DNA (RAPD) primers, which were then converted into PCR-based sequence characterized amplified region (SCAR) markers. The CY6069-specific primer set amplified about 550 bp successfully, while the CY6097 marker produced the expected 690 bp band, by which those markers were nominated by CY6069_550 and CY6069_690 SCARs, respectively. Together with the reported morphological and other phenotypic features, the SCAR markers confirmed in this study will be useful to identify those medium-leaf zoysiagrass genotypes when they are cultivated with other vegetatively propagated warm-season turfgrasses in sod farms.

Development of Suhan Strain-specific SCAR Marker in Pleurotus ostreatus (느타리 버섯에서 수한 품종 특이 SCAR marker 개발)

  • Seo, Kyoung-In;Jang, Kab-Yeul;Yoo, Young-Bok;Park, Soon-Young;Kim, Kwang-Ho;Kong, Won-Sik
    • The Korean Journal of Mycology
    • /
    • v.39 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • In this study, 81 commercial strains of Pleurotus species cultivated in South Korea were analyzed with randomly amplified polymorphic DNA (RAPD) technique. Sequence characterized amplified region (SCAR) markers were developed by designing from one RAPD polymorhic band specific to Suhan strain. The SCAR primer pair 'S-OPA13-1' amplified a 590-bp fragment in the varieties originated from Suhan strain. The Blast search of S-OPA13-1 showed high homology to the POMFBO1 P. ostreatus cDNA clone MFB02-A05 and Laccaria bicolor S238N-H82. The results showed that this SCAR marker can clearly distinguish Suhan strains from Pleurotus spp.