• Title/Summary/Keyword: RAPD marker

Search Result 204, Processing Time 0.027 seconds

Random Amplified Polymorphic DNA-PCR Analysis for Identification of Bacillus anthracis (탄저균의 Random Amplified Polymorphic DNA-PCR 분석)

  • 김성주;박경현;김형태;조기승;김기천;최영길;박승환;이남택;채영규
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.56-60
    • /
    • 2001
  • Molecular typing of Bacillus anthracis has been extremely difficult due to the lack of polymorphic DNA markers. Aiming to develop a DNA marker specific for Bacillus anthracis and to be able to discriminate this species from Bacillus genus, we applied the random amplified polymorphic DNA (RAPD)-PCR. We have identified B. anthracis from various Bacillus species. The analysis performed by RAPD clearly demonstrated substantial genetic variations among Bacillus species. This type of analysis is an easy, quick and highly discriminatory technique that may help in diagnosis of anthrax.

  • PDF

Specific Marker Gene Analyses for DNA Polymorphism of the Blood Cell in Korea Native Brindled Cattle (칡한우 혈액에서 DNA 다양성 분석을 통한 표지 유전자 탐색)

  • Kim, Sang-Hwan;Hong, Yeon-Sik;Lee, Ho-Joun;Yoon, Jong-Taek
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.315-324
    • /
    • 2011
  • This study was conducted to detect the specific expressing genes by using RAPD-PCR and RFLP method in the Korea Native Brindled Cattle, Korean Native cow and Holstein cattle. And then, the specific marker gene was investigated by the analysis of the genes for detection significance according to the expressing pattern. We found the specific expression gene by the RAPD-PCR analysis in Korea Native Brindled Cattle. It was detected the differences of the species in the colour and external section. The Korea Native Brindled Cattle were vary low compare to the Korean Native cow and Holstein cattle by analysis result of polymorphism and distribution. And there were a found the specific marker gene by sequencing in the R9B gene fragment of Korea Native Brindled Cattle. And the sequencing result of the R9B was different between Korean Native cow and Holstein cattle. Thus, this gene can be apply as the specific marker gene in the Korea Native Brindled Cattle.

Efficiency of RAPD and ISSR Markers in Differentiation of Homo- and Heterokaryotic Protoclones of Agaricus bisporus

  • Mahmudul, Islam Nazrul;Bian, Yin-Bing
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.683-692
    • /
    • 2010
  • Morphologically, nine different slow-growing protoclones were screened from regenerated protoplasts of heterokaryotic Agaricus bisporus. As such, the present study is the first report on differentiating homo- and heterokaryotic protoclones using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. Among 80 primers tested, the seven ISSR and seven RAPD primers selected for the analysis generated a total of 94 ISSR and 52 RAPD fragments, respectively. The ISSR fingerprinting also detected more polymorphic loci (38.29%) than the RAPD fingerprinting (34.61%). A principal coordinate analysis (PCA) was employed to evaluate the resolving power of the markers as regards differentiating protoclones. As a result, the mean polymorphism information content (PIC) for each marker system (i.e., 0.787 for RAPD and 0.916 for ISSR) suggested that ISSR is more effective for determining polymorphisms. The dendrograms constructed using RAPD, ISSR, and an integrated RAPD and ISSR marker system were highly correlated with one another as revealed by a high Mantel correlation (r= 0.98). The pairwise similarity index values also ranged from 0.64 to 0.95 (RAPD), 0.67 to 0.98 (ISSR), and 0.67 to 0.98 (RAPD and ISSR), whereas the mean similarity index values of 0.82, 0.81, and 0.84 were obtained for the RAPD, ISSR, and combined data, respectively. As there was a good correspondence between the RAPD and ISSR similarity matrices, ISSR would appear to be an effective alternative to RAPD in the genetic diversity assessment and accurate differentiation of homo- and heterokaryotic protoclones of A. bisporus.

Identification of a Rice Gene (Bph 1) Conferring Resistance to Brown Planthopper (Nilaparvata lugens Stal) Using STS Markers

  • Kim, Suk-Man;Sohn, Jae-Keun
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.30-34
    • /
    • 2005
  • This study was carried out to identify a high-resolution marker for a gene conferring resistance to brown planthopper (BPH) biotype 1, using japonica type resistant lines. Bulked segregant analyses were conducted using 520 RAPD primers to identify RAPD fragments linked to the BPH resistance gene. Eleven RAPDs were shown to be polymorphic amplicons between resistant and susceptible progeny. One of these primers, OPE 18, which amplified a 923 bp band tightly linked to resistance, was converted into a sequence-tagged-site (STS) marker. The STS marker, BpE18-3, was easily detectable as a dominant band with tight linkage (3.9cM) to Bph1. It promises to be useful as a marker for assisted selection of resistant progeny in backcross breeding programs to introgress the resistance gene into elite japonica cultivars.

Evaluation of Genetic Relationship among Sweetpotato Cultivars Using Randomly Amplified Polymorphic DNA (RAPD) Analysis (RAPD법을 이용한 고구마 품종간 유연관계 평가)

  • Lee, Gung-Pyo;Park, Kuen-Woo
    • Horticultural Science & Technology
    • /
    • v.16 no.1
    • /
    • pp.18-20
    • /
    • 1998
  • The present research was conducted to study genetic relationship and cultivar identification in sweet potato (lpomoea batatas) using RAPD method. Thirteen cultivars of sweet potato in Korea were classified by UPGMA clustering method into three groups as follows; group I was corresponded to 'Choongsung100'; group II, 'Eunmi', 'Saengmi', 'Suwon147' and 'Yulmi'; group III, 'Hongmi', 'Jinmi', 'Kwandong95', 'Seonmi', 'Wonmi', 'Shinyulmi', 'Jeungmi', and 'Poongmi'. Identification using RAPD was generally consistent with breeding pedigree of those parents. However, inconsistent results may be caused by clonal variation. The results presented in this study suggest that RAPDs in sweetpotato are likely to be useful for cultivar identification and various procedures in breeding. The use of various DNA marker system assists selection programs for economically important trait, and may facilitate selection in earlier growing stage. This systems may enhance the prospects for improving sweet potato cultivar by accurate marking desirable traits at DNA level.

  • PDF

Genetic Diversity Based on Morphology and RAPD Analysis in Vegetable Soybean

  • Srinives, P.;Chowdhury, A.K.;Tongpamnak, P.;Saksoong, P.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.112-120
    • /
    • 2001
  • Genetic diversity of 47 East-Asian vegetable soybean was characterized by means of agro-morphological traits and RAPD markers. A field trial was conducted to evaluate 14 agro-morphological traits. To study RAPD-based DNA analysis, a total of sixty 10-mer random primers were screened. Of these, 23 polymorphic markers in 16 varieties used for screening. Among 207 markers amplified, 48 were polymorphic for at least one pairwise comparison within the 47 varieties. A higher differentiation level between varieties was observed by using RAPD markers compared to morphological markers. Correspondence analysis using both types of marker showed that RAPD data could fully discriminate between all varieties, whereas morphological markers could not achieve a complete discrimination. Genetic distances between the varieties were estimated from simple matching coefficients, ranged from 0.0 to 0.640 with an average of 0.295$\pm$0.131 for morphological traits and 0.042 to 0.625 with an average of 0.336$\pm$0.099 for RAPD data, respectively. Cluster analysis based on genetic dissimilarity of these varieties gave rise to 4 distinct groups. The clustering results based on RAPDs did not match with those based on morphological traits. Geographical distribution of most varieties in each of the groups were not well defined. The results suggested that the level of genetic diversity within this group of East-Asian vegetable soybean varieties was sufficient for a breeding program and can be used to establish genetic relationships among them with unknown or unrelated pedigrees.

  • PDF

Identification of Monoecious and Dioecious Plants of. Schisandra nigra Using the RAPD Markers (RAPD 표지인자를 이용한 흑오미자의 자웅동주 및 자웅이주 식물의 동정)

  • 이효연;한효심;이갑연;한상섭;정재성
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.309-313
    • /
    • 1998
  • RAPD (Random Amplified Polymorphic DNA) analysis was conducted to Schisandra nigra plants in order to select the specific markers for monoecious and dioecious individuals. RAPD results using eighty random 10-mer primers revealed that S. nigra had a different banding pattern from S. chinensis and Kadsura japonica. When DNA isolated from leaves of monoecious and dioecious plants were used as PCR template, only five primers, OPA-17, OPA-19, OPB-03, OPB-09 and OFB-16, showed polymorphic band patterns. No variation in banding profiles within male or female individuals was observed when these five primers were used whereas three monoecious plants (No 1, No 2 and No 3) showed different banding patterns one another, A 750 bp segment was amplified by primer OPB-3 from male individuals. On the other hand, two segments, 950 bp and 1690 bp, with OPA-19 and 700 bp of segment with OPB-3 were amplified in female individuals. These result indicate that the specific buds of male and female S. nigra could be used as genetic markers for the early discrimination of male and female individuals.

  • PDF

Screening of RAPD Markers for Fluoride Resistance in Bombyx mori L.

  • Chen, Keping;Yao, Qin;Li, Muwang;Wang, ong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.1
    • /
    • pp.11-14
    • /
    • 2003
  • NF733xin, the near allele line was obtained by means of crossing and backcrossing the silkworm race T6, which contained fluoride resistance major gene, to race 733xin, which was highly susceptible to fluoride toxicity. Two hundred RAPD random primers were used in the RAPD analysis of these 3 strains. Two molecular markers, OPB-08850 and OPB-10917, were obtained. OPB-10917 was used to detect the backcross generations. It was found that all the fluoride resistant individuals in each backcross generation had the same special band. These results proved that this marker was reliable.

Discrimination and Genetic Relationship of Adenophorae triphylla(Thunb) A.DC. var. japonica Hara and Codonopsis lanceolata Trauty using RAPD analysis (RAPD분석에 의한 잔대와 더덕의 유연관계 비교 및 감별)

  • Lee, Mi-Young;Mo, Suk-Yeon;Kim, Du-Whan;Oh, Seong-Eun;Ko, Byoung-Seob
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.3
    • /
    • pp.205-210
    • /
    • 2001
  • Dried parts of the two species are difficult to distinguish morphologically, thus Codonopsis radix has been sold instead of Adenophorae radix in herbal medicine market. Therefore, this study was conducted to develop the genetic marker through the examination of the phylogenetic relationships between two Adenophora triphylla(Thunb.) A. DC. var. japonica Hara, two Adenophora radiatifolia Nakai, five Codonopsis lanceolata(Sieb. et Zucc)Trautv. using RAPD analysis. Fifty decarmer oligonucleotide primers were screened for the RAPD analysis, and four primers generated distinct RAPD markers specific to Adenophorae radix and Codonopsis radix. Based on the RAPD patterns, the genetic relationships between three herbal medicine were analyzed by UPGMA method. As a result, Adenophorae radix and Codonopsis radix were classified into two major subgroups on the basis of the genetic similarity coefficient. The specific RAPD patterns generated by the selected primers were reproducible from dried materials. Furthermore, the specific RAPD patterns were produced from the mixture of dried roots of A. triphylla and C. lanceolata. These results prone the usefulness of the RAPD analysis for the discrimination of pure materials from the mixtures of A. triphylla and C. lanceolata.

  • PDF

Incorporation of RAPD linkage Map Into RFLP Map in Glycine max (L, ) Merr (콩의 RAPD 연관지도를 RFLP 연관지도와 합병)

  • Choi, In-Soo;Kim, Yong-Chul
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.280-290
    • /
    • 2003
  • The incorporation of RAPD markers into the previous classical and RFLP genetic linkage maps will facilitate the generation of a detailed genetic map by compensating for the lack of one type of marker in the region of interest. The objective of this paper was to present features we observed when we associated RAPD map from an intraspecific cross of a Glycine max$\times$G. max, 'Essex'$\times$PI 437654 with the public RFLP map developed from an interspecific cross of G. max$\times$G. soja. Among 27 linkage groups of RAPD map, eight linkage groups contained probe/enzyme combination RFLP markers, which allowed us the incorporation of RAPD markers into the public RFLP map. Map position rearrangement was observed. In incorporating L.G.C-3 into the public RFLP linkage group a1 and a2, both pSAC3 and pA136 region, and pA170/EcoRV and pB170/HindIII region were in opposite order, respectively. And, pk400 was localized 1.8 cM from pA96-1 and 8.4 cM from pB172 in the public RFLP map, but was localized 9.9 cM from i locus and 18.9 cM from pA85 in our study. A noticeable expansion of the map distances in the intraspecific cross of Essex and PI 437654 was also observed. Map distance between probes pA890 and pK493 in L.G.C-1 was 48.6 cM, but it was only 13.3 cM in the public RFLP map. The distances from the probe pB32-2 to pA670 and from pA670 to pA668 in L.G. C-2 were 50.9 cM and 31.7 cM, but they were 35.9 cM and 13.5 cM in the public RFLP map. The detection of duplicate loci from the same probe that were mapped on the same or/and different linkage group was another feature we observed.