DOI QR코드

DOI QR Code

Efficiency of RAPD and ISSR Markers in Differentiation of Homo- and Heterokaryotic Protoclones of Agaricus bisporus

  • Mahmudul, Islam Nazrul (Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University) ;
  • Bian, Yin-Bing (Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University)
  • Received : 2009.06.16
  • Accepted : 2009.11.23
  • Published : 2010.04.28

Abstract

Morphologically, nine different slow-growing protoclones were screened from regenerated protoplasts of heterokaryotic Agaricus bisporus. As such, the present study is the first report on differentiating homo- and heterokaryotic protoclones using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. Among 80 primers tested, the seven ISSR and seven RAPD primers selected for the analysis generated a total of 94 ISSR and 52 RAPD fragments, respectively. The ISSR fingerprinting also detected more polymorphic loci (38.29%) than the RAPD fingerprinting (34.61%). A principal coordinate analysis (PCA) was employed to evaluate the resolving power of the markers as regards differentiating protoclones. As a result, the mean polymorphism information content (PIC) for each marker system (i.e., 0.787 for RAPD and 0.916 for ISSR) suggested that ISSR is more effective for determining polymorphisms. The dendrograms constructed using RAPD, ISSR, and an integrated RAPD and ISSR marker system were highly correlated with one another as revealed by a high Mantel correlation (r= 0.98). The pairwise similarity index values also ranged from 0.64 to 0.95 (RAPD), 0.67 to 0.98 (ISSR), and 0.67 to 0.98 (RAPD and ISSR), whereas the mean similarity index values of 0.82, 0.81, and 0.84 were obtained for the RAPD, ISSR, and combined data, respectively. As there was a good correspondence between the RAPD and ISSR similarity matrices, ISSR would appear to be an effective alternative to RAPD in the genetic diversity assessment and accurate differentiation of homo- and heterokaryotic protoclones of A. bisporus.

Keywords

References

  1. Alexopoulos, C. J., C. W. Mims, and M. Blackwell. 1996. Introductory Mycology, pp. 687-688. 4th Ed. John Wiley and Sons, Inc., New York.
  2. Amin, M., H. Dongmei, and P. Yingjie. 1995. Study on homokaryotic protoplast breeding technique in Agaricus bisporus. I. Isolation and identification of homokaryotic protoplast in Agaricus bisporus. Acta Edulis Fungi 2: 1-5.
  3. Anderson, J. B., D. M. Petsche, F. B. Herr, and P. A. Horgen. 1984. Breeding relationships among several species of Agaricus. Can. J. Bot. 62: 1884-1889. https://doi.org/10.1139/b84-257
  4. Begin, M. and M. Spear. 1991. A novel method for inducing the expression of sectors in Agaricus bisporus, pp. 105-109. In M. J. Maher (ed.). Science and Cultivation of Edible Fungi. Balkema, Rotterdam, The Netherlands.
  5. Blair, M. W., O. Panaud, and S. R. Mccouch. 1999. Inter-simple sequence repeats (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor. Appl. Genet. 98: 780-792. https://doi.org/10.1007/s001220051135
  6. Buller, A. H. R. 1931. Researches on Fungi. IV. Further observations on the Coprini together with some investigations on social organization and sex in the hymenomycetes. Longmans, Green and Co., London.
  7. Callac, P., S. Hocquart, M. Imbernon, C. Desmerger, and J. M. Oliver. 1998. Bsn-t alleles from French field strains of Agaricus bisporus. Appl. Environ. Microbiol. 64: 2105-2110.
  8. Camacho, F. J. and A. Liston. 2001. Population structure and genetic diversity of Botrychium pumicola (Ophioglossaceae) based on inter-simple sequence repeats (ISSR). Am. J. Bot. 88: 1065-1070. https://doi.org/10.2307/2657089
  9. Casasoli, M., C. Mattioni, M. Cherubini, and F. Villani. 2001. Genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers. Theor. Appl. Genet. 102: 1190-1199. https://doi.org/10.1007/s00122-001-0553-1
  10. Castle, A. J., P. A. Horgen, and J. B. Anderson. 1987. Restriction fragment length polymorphisms in the mushrooms Agaricus brunnescens and Agaricus bitorquis. Appl. Environ. Microbiol. 53: 816-822
  11. Depeiges, A., C. Goubely, A. Lenoir, S. Cocherel, G. Picard, M. Raynal, F. Grellet, and M. Delseny. 1995. Identification of the most represented motifs in Arabidopsis thaliana microsatellite loci. Theor. Appl. Genet. 91: 160-168.
  12. Dice, L. R. 1945. Measures of the amount of ecologic association between species. Ecology 26: 297-302. https://doi.org/10.2307/1932409
  13. Divaret, I., E. Margale, and G. Thomas. 1999. RAPD markers on seed bulks efficiently assess the genetic diversity of a Brassica oleracea L. collection. Theor. Appl. Genet. 98: 1029-1035. https://doi.org/10.1007/s001220051164
  14. Elliott, T. J. 1972. Sex and the single spore, pp. 11-18. In R. L. Edwards (ed.). Mushroom Science. Mushroom Growers Association, London.
  15. Esselman, E. J., L. Jianqiang, D. J. Crawford, J. L. Windus, and A. D. Wolfe. 1999. Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): Comparative results for allozymes and random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. Mol. Ecol. 8: 443-451. https://doi.org/10.1046/j.1365-294X.1999.00585.x
  16. Fang, D. Q. and M. L. Roose. 1997. Identification of closely related citrus cultivars with inter-simple sequence repeats markers. Theor. Appl. Genet. 95: 408-417. https://doi.org/10.1007/s001220050577
  17. Fritsche, G. 1991. A personal view on mushroom breeding from 1957-1991, pp. 3-21 In L. J. L. D. Van Grirnsven (ed.). Genetics and Breeding of Agaricus. Pudoc Press, The Netherlands.
  18. Gilbert, J. E., R. V. Lewis, M. J. Wilkinson, and P. D. S. Caligari. 1999. Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor. Appl. Genet. 98: 1125-1131. https://doi.org/10.1007/s001220051176
  19. Guan, X. J., L. Xu, Y. C. Shao, Z. R. Wang F. S. Chen, and X. C. Luo. 2008. Differentiation of commercial strains of Agaricus species in China with inter-simple sequence repeat marker. World J. Microbiol. Biotechnol. 24: 1617-1622. https://doi.org/10.1007/s11274-007-9647-5
  20. Hess, J., J. W. Kadereit, and P. Vargas. 2000. The colonization history of Olea europea L. in Macaronesia based on internal transcribed spacer 1(ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and inter-simple sequence repeats (ISSR). Mol. Ecol. 9: 857-868. https://doi.org/10.1046/j.1365-294x.2000.00942.x
  21. Horgen, P. A. 1992. The application of biotechnology to button mushroom Agaricus bisporus, pp. 191-200. In J. R. Kinghorn (ed.). Applied Molecular Genetics of Filamentous Fungi. Champman & Hall, Cambridge, U.K.
  22. Horgen, P. A. and J. B. Anderson. 1992. Edible mushrooms, pp. 447-462. In D. Finkelstein and C. Ball (eds.). Biotechnology of Filamentous Fungi. Butterworth-Heinemann, Boston
  23. Jaccard, P. 1908. Nouvelles recherches sur la distribution florale. Bulletin de la Societe. Vaudoise des Sciences Naturelles 44: 223-270.
  24. Jin, J. K. and H. L. Xu. 1990. Comparative study on fluffy and appressed types of Agaricus bisporus (L.) Imbach. Edible Fungi China 9: 12-13.
  25. Kerrigan, R. W., L. M. Baller, P. A. Horgen, and J. B. Anderson. 1992. Strategies for the efficient recovery of Agaricus bisporus homokaryons. Mycologia 84: 575-579. (In Chinese) https://doi.org/10.2307/3760324
  26. Khush, R. S., E. Becker, and M. Wach. 1992. DNA amplification polymorphisms of the cultured mushroom Agaricus bisporus. Appl. Environ. Microbiol. 58: 2971-2977.
  27. Li, R. C. and X. C. Fang. 2002. Analysis of POD and EST isozyme of three Agaricus species. Edible Fungi China 21: 34-36. (In Chinese)
  28. Magae, Y., Y. Kakimoto, Y. Kashiwagi, and T. Sasaki. 1985. Fruit body formation from regenerated mycelium of Pleurotus ostreatus protoplasts. Appl. Environ. Microbiol. 49: 441-442.
  29. Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220.
  30. Mattioni, C., M. Casasoli, M. Gonzalez, R. Ipinza, and F. Villani. 2002. Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species. Theor. Appl. Genet. 104: 1064-1070. https://doi.org/10.1007/s00122-001-0824-x
  31. Moreno, S., J. P. Martin, and J. M. Ortiz. 1998. Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica 101: 117-125. https://doi.org/10.1023/A:1018379805873
  32. Nagaoka, T. and Y. Ogihara. 1997. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94: 597-602. https://doi.org/10.1007/s001220050456
  33. Prevost, A. and M. J. Wilkinson. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98: 107-112. https://doi.org/10.1007/s001220051046
  34. Qian, W., S. Ge, and D. Y. Hong. 2001. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor. Appl. Genet. 102: 440-449. https://doi.org/10.1007/s001220051665
  35. Qin, L. H., C. Y. Song, Q. Tan, M. J. Chen, and Y. J. Pan. 2006. Use of ITS and ISSR markers to identify cultivated strains for Lentinus edodes. Mycosystema 25: 94-100. (In Chinese)
  36. Raper, C. A., J. R. Raper, and R. E. Miller. 1972. Genetic analysis of the life cycle of Agaricus bisporus. Mycologia 64: 1088-1117. https://doi.org/10.2307/3758075
  37. Robert, B. B., R. J. Daniel, and N. Chikthimmah. 2003. Bioactive components in button mushroom Agaricus bisporus of nutritional, medicinal, and biological importance. Int. J. Med. Mush. 5: 321-327. https://doi.org/10.1615/InterJMedicMush.v5.i4.10
  38. Rohlf, F. J. 2000. NTSYS-pc: Numerical taxonomy and multivariate analysis system, Version 2.02. Exeter Publications, Setauket, NY.
  39. Royse, D. J. and B. May. 1982. Use of isozyme variation to identify genotypic classes of Agaricus brunnescens. Mycologia 74: 93-102. https://doi.org/10.2307/3792632
  40. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, pp. 26-66. 3rd Ed. Cold Spring Harbor Laboratory Press, New York.
  41. Singh, R. I., K. Aarti, and S. S. Singh. 2007. Formation of interspecies fusants of Agaricus bisporus and Agaricus bitorquis mushroom by protoplast fusion. Indian J. Microbiol. 47: 369-372. https://doi.org/10.1007/s12088-007-0066-y
  42. Smith, J. S. C., E. C. L. Chin, H. Shu, O. S. Smith, S. J. Wall, M. L. Senior, S. E Mitchell, S. Kresovich, and J. Zeigle. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): Comparison with data from RFLPs and pedigree. Theor. Appl. Genet. 95: 163-173. https://doi.org/10.1007/s001220050544
  43. Song, Z. P., Y. Guan, J. Rong, X. Xu, and B. R. Lu. 2006. Inter-simple sequence repeat (ISSR) variation in populations of the cutgrass Leersia hexandra. Aquat. Bot. 84: 359-362. https://doi.org/10.1016/j.aquabot.2005.11.009
  44. Sonnenberg, A. S. M. 2000. Genetics and breeding of Agaricus bisporus, pp. 25-39 In L. J. L. D. Van Griensven (ed.). Mushroom Science XV; Science and Cultivation of Edible Fungi. Rotterdam, Blakema.
  45. Sonnenberg, A., J. G. Wessels, and L. J. van Griensven. 1988. An efficient protoplasting/regeneration system for Agaricus bisporus and Agaricus bitorquis. Curr. Microbiol. 17: 285-291. https://doi.org/10.1007/BF01571330
  46. Spear, M. C., D. J. Royse, and B. May. 1983. A typical meiosis and joint segregation of biochemical loci in Agaricus brunnescens. J. Hered. 74: 417-420.
  47. Staniaszek, M., W. Marczewski, K. Szudyga, J. Maszkiewicz, A. Czaplicki, and G. Gian. 2002. Genetic relationship between Polish and Chinese strains of the mushroom Agaricus bisporus (Lange) Sing., determined by the RAPD method. J. Appl. Genet. 43: 43-47.
  48. Tang, L. H., Y. Xiao, and Y. B. Bian. 2005. The orthogonal optimization of ISSR-PCR amplification system in Auricularia auricula. J. Fungal Res. 3: 15-18. (In Chinese)
  49. Tsumura, Y., K. Ohba, and S. H. Strauss. 1996. Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). Theor. Appl. Genet. 92: 40-45. https://doi.org/10.1007/BF00222949
  50. Welsh, J. and M. McClelland. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213-7218. https://doi.org/10.1093/nar/18.24.7213
  51. Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. https://doi.org/10.1093/nar/18.22.6531
  52. Wolfe, A. D. and A. Liston. 1998. Contributions of PCR-based methods to plant systematics and evolutionary biology, pp. 43-86. In D. E. Soltis, P. S. Soltis, and J. J. Doyle (eds.). Molecular Systematics of Plants II: DNA Sequencing. Kluwer, New York.
  53. Worrall, J. J. 1997. Somatic incompatibility in basidiomycetes. Mycologia 89: 24-36. https://doi.org/10.2307/3761169
  54. Yadav, M. C., R. N. Verma, and B. L. Dhar. 1999. Studies on the development of improved strains and hybrids of white button mushroom Agaricus bisporus (Lange) Imbach. The 3rd International Conference on Mushroom Biology and Mushroom Product (ICMBMP), Sydney, Australia, October 12-16, pp. 1-9.
  55. Yang Xinmei. 1996. Cultivation of Edible Fungi (Chinese), pp. 239-241. 1st Ed. China's Agricultural Public Press, Beijing, China.
  56. Zhao, J. and S. T. Chang. 1993. Monokaryotization by protoplasting heterothallic species of edible mushrooms. World J. Microbiol. Biotechnol. 9: 538-543. https://doi.org/10.1007/BF00386290

Cited by

  1. Development of Novel Microsatellite Markers for Strain-Specific Identification of Chlorella vulgaris vol.24, pp.9, 2014, https://doi.org/10.4014/jmb.1405.05047
  2. ISSR primers for analysis of genetic variability of Stenocarpella maydis vol.41, pp.4, 2010, https://doi.org/10.1007/s40858-016-0089-1