• Title/Summary/Keyword: RANS turbulence model

Search Result 220, Processing Time 0.026 seconds

Hybrid RANS/LES Method for Turbulent Channel Flow (채널난류유동에 대한 하이브리드 RANS/LES 방법)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1088-1094
    • /
    • 2002
  • A channel flow with a high Reynolds number but coarse grids is numerically studied to investigate the prediction possibility of its turbulence which is three-dimensional and time-dependent. In the present paper, a Reynolds-Averaged Navier-Stokes (RANS) model, a Large Eddy Simulation (LES) and a Navier-Stokes equation with no model are tested with a new approach of hybrid RANS/LES, which reduces to RANS model in the boundary layers and at separation, and to Smagorinsky-like LES downstream of separation, and then compared with each other. It is found that the simulations of hybrid RANS/LES method sustain turbulence like those of LES and with no model, and the results are stable and fairly accurate. This indicates strongly that gradual improvements could lead to a simple, stable, and accurate approach to predict turbulence phenomena of wall-bounded flow.

Evaluation of the applicability of a buoyancy-modified turbulence model for free surface flow analysis based on the VOF method (VOF 기반 자유수면 흐름 해석을 위한 부력 수정 난류 모형의 적용성 평가)

  • Lee, Du Hana
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.493-507
    • /
    • 2024
  • RANS-based CFD analysis is widely applied in various engineering fields, including practical hydraulic engineering, due to its high computational efficiency. However, problems of non-physical behavior in the analysis of two phase flow, such as free surfaces, have long been raised. The two-equation turbulence models used in general RANS-based analysis were developed for single phase flow and simulate unrealistically high turbulence energy at the interface where there are abrupt changes in fluid density. To solve this issue, one of the methods recently developed is the buoyancy-modified turbulence model, which has been partially validated in coastal engineering, but has not been applied to open channel flows. In this study, the applicability of the buoyancy-modified turbulence model is evaluated using the VOF method in the open-source program OpenFoam. The results of the uniform flow showed that both the buoyancy-modified k-𝜖 model and the buoyancy-modified k-ω SST model effectively simulated the reduction of turbulence energy near the free surface. Specifically, the buoyancy-modified k-ω SST model accurately simulated the vertical velocity distribution. Additionally, the model is applied to dam-break flows to examine cases with significant surface variation and cavity formation. The simulation results show that the buoyancy-modified turbulence models produce varying results depending on the VOF method and shows non-physical behavior different from experimental results. While the buoyancy-modified turbulence model is applicable in cases with stable surface shapes, it still has limitations in general application when there are rapid changes in the free surface. It is concluded that appropriate adjustments to the turbulence model are necessary for flows with rapid surface changes or cavity formation.

Computational Simulations of Turbulent Wake Behind a Pre-Swirl Duct Using a Hybrid Turbulence Model with High Fidelity (하이브리드 난류 모델을 이용한 전류고정덕트 후류의 고정도 수치 해석)

  • Kang, Min Jae;Jung, Jae Hwan;Cho, Seok Kyu;Hur, Jea-Wook;Kim, Sanghyeon;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • A hybrid turbulence model has developed by combining a sub-grid scale model using dynamic k equation in LES with k-𝜔 SST model of RANS equation. To ascertain potential applicability of the hybrid turbulence model, fully developed turbulent channel flows at Re𝜏=180 have been simulated of which computational domain has a top wall with coarse cells and a bottom wall with fine cells. The streamwise mean velocity and turbulent intensity profiles showed a good agreement with DNS data when using the hybrid model rather than using a single model in k-𝜔 SST or dynamic k equation models. Computational simulations of turbulent flows around KVLCC2 with a pre-swirl duct have been mainly performed using the hybrid turbulence model. Compared to the results obtained from RANS simulation with k-𝜔 SST model as well as LES with dynamic k equation SGS model, turbulent wakes of the duct in the present simulation using the hybrid turbulence model were very similar to that of LES. Also, the resistances acting on hull, rudder and duct in hybrid turbulence model were similar to those in RANS simulation whereas the viscous forces acting on the hull in LES had a significant error due to coarse cells inappropriate to the sub-grid scale model.

Comparison of RANS, URANS, SAS and IDDES for the prediction of train crosswind characteristics

  • Xiao-Shuai Huo;Tang-Hong Liu;Zheng-Wei Chen;Wen-Hui Li;Hong-Rui Gao;Bin Xu
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.303-314
    • /
    • 2023
  • In this study, two steady RANS turbulence models (SST k-ω and Realizable k-ε) and four unsteady turbulence models (URANS SST k-ω and Realizable k-ε, SST-SAS, and SST-IDDES) are evaluated with respect to their capacity to predict crosswind characteristics on high-speed trains (HSTs). All of the numerical simulations are compared with the wind tunnel values and LES results to ensure the accuracy of each turbulence model. Specifically, the surface pressure distributions, time-averaged aerodynamic coefficients, flow fields, and computational cost are studied to determine the suitability of different models. Results suggest that the predictions of the pressure distributions and aerodynamic forces obtained from the steady and transient RANS models are almost the same. In particular, both SAS and IDDES exhibits similar predictions with wind tunnel test and LES, therefore, the SAS model is considered an attractive alternative for IDDES or LES in the crosswind study of trains. In addition, if the computational cost needs to be significantly reduced, the RANS SST k-ω model is shown to provide relatively reasonable results for the surface pressures and aerodynamic forces. As a result, the RANS SST k-ω model might be the most appropriate option for the expensive aerodynamic optimizations of trains using machine learning (ML) techniques because it balances solution accuracy and resource consumption.

NEURAL OPERATOR BASED REYNOLDS AVERAGED TURBULENCE MODELLING

  • SEUNGTAE PARK;JUNSEUNG RYU;HYUNGJU HWANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.28 no.3
    • /
    • pp.108-119
    • /
    • 2024
  • The Reynolds-averaged Navier-Stokes (RANS) simulations are commonly used in industrial applications due to their computational efficiency. However, the linear eddy viscosity model (LEVM) used in RANS often fails to accurately capture the anisotropy of Reynolds stress in complex flow conditions. To enhance RANS predictive accuracy, data-driven closure models, such as Tensor Basis Neural Network (TBNN) and Tensor Basis Random Forest (TBRF), have been proposed. However existing models, including TBNN and TBRF, have limitations in capturing the nonlocal patterns of turbulence models, resulting in irregular and unsmooth predictions. Convolutional neural networks (CNNs) are considered as an alternative approach, but their reliance on discretization poses challenges when dealing with arbitrarily designed meshes in RANS simulations. In this study, we propose a nonlinear convolutional neural operator as the RANS closure model. Our model satisfies Galilean invariance, can learn nonlocal physics, and recovers high-resolution physics even when trained on undersampled grids. The model outperforms existing TBNN and TBRF models, successfully predicting smooth fields of Reynolds stress in flows with adverse pressure gradients, separations, and streamline curvature, where existing models struggle or fail to provide accurate predictions.

A New Wall-Distance Free One-Equation Turbulence Model

  • Nakanishi Tameo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.107-109
    • /
    • 2003
  • We propose a wall distance free one-equation turbulence model. The model is organized in an extremely simple form. Only a few model constants were introduced into the model. The model is numerically tough and easy-of-use. The model also demonstrated the ability to simulate the laminar to turbulent flow transition. The model has been applied to the channel flow, the plane jet, the backward facing step flow, the flat plate boundary layer, as well as the flow around the 2D airfoil at large angles of attack, which obtained satisfactory results.

  • PDF

A Study on the Flow Characteristics in Urban Stream Using 3-D Numerical Model (3차원 수치모형을 이용한 도시하천의 흐름특성에 관한 연구)

  • Yoon, Sun-Kwon;Kim, Jong-Suk;Moon, Young-Il;Lee, Il-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1287-1292
    • /
    • 2007
  • Recently, the frequency of unexpecting heavy rains has been increased due to abnormal climate and extreme rainfall. There was a limit to analyze 1D or 2D stream flow that was applied simple momentum equation and fixed energy conservation. Therefore, hydrodynamics flow analysis in rivers has been needed 3D numerical analysis for correct stream flow interpretation. In this study, CFD model on FLOW-3D was applied to stream flow analysis, which solves three dimenson RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as ${\kappa}-{\varepsilon}$, RNG ${\kappa}-{\varepsilon}$ and LES. Those numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow distributions, water level pressure distributions and eddy flows around the piers at Jangwall bridge in urbarn stream.

  • PDF

RANS Simulations for KRISO Container Ship and VLCC Tanker (KRISO 컨테이너 및 VLCC선형에 대한 RANS 시뮬레이션)

  • Kim, Jin;Park, Il-Ryong;Kim, Kwang-Soo;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.593-600
    • /
    • 2005
  • The finite volume based multi-block RANS code, WAVIS developed at KRISO, is used to simulate the turbulent flow field around the KRISO container ship (KCS) and the modified KRISO tanker (KVLCC2M). The realizable k-$\varepsilon$ turbulence model with a wall function is employed for the turbulence closure. The free surface flow with and without propeller is mainly investigated for the KCS and the double model flow is concerned for the KVLCC2M which is obliquely towed in still water. The computed results are compared with the experimental data provided by CFD Tokyo Workshop 2005 in terms of wave profiles, hull surface pressure and wake distribution with and without propeller for the HCS and wake distribution and hydrodynamic forces and moments with various drift angles for the KVLCC2M.

Evaluation of turbulence models in rough-wall boundary layers for hydroelectric applications

  • Dutta, Rabijit;Nicolle, Jonathan;Giroux, Anne-Marie;Piomelli, Ugo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.227-239
    • /
    • 2017
  • The accuracy of turbulence models for the Reynolds-Averaged Navier-Stokes (RANS) equations in rough-wall flows is evaluated using data from large-eddy simulations (LES) of boundary layers with favourable and adverse pressure gradients. Some features of the flow (such as flow reversal in the roughness sublayer) cannot be captured accurately by any model, due to the fundamental model formulation. In mild pressure gradients most RANS models are sufficiently accurate for engineering applications, but if strong favourable or adverse pressure gradients are applied (especially those leading to separation) the model performance rapidly degrades.

An evaluation of wall functions for RANS computation of turbulent flows (난류 흐름의 RANS 수치모의를 위한 벽함수 성능 평가)

  • Yoo, Donggeun;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • The most common approach for computing engineering flow problems at high Reynolds number is still the Reynolds-averaged Navier-Stokes (RANS) computations based on turbulence models with wall functions. The recently developed generalized wall functions blending between the wall-limiting viscous and the outer logarithmic relations ensure a smooth transition of flow quantities across two regions. The performances and convergence properties of widely used turbulence models with wall functions that are applicable for turbulence kinetic energy (TKE), turbulent and specific dissipation rates, and eddy viscosity are presented through a series of near wall flow simulations. The present results show that RNG k-𝜖 model should be carefully applied with small tolerance to get the stable solution when the first grid lies in the buffer layer. The standard k-𝜖 and RNG k-𝜖 models are not sensitive to the selection of wall functions for both TKE and eddy viscosity, while the k-ω SST model should be applied together with kL-wall function for TKE and nutUB-wall functions for eddy viscosity to ensure accurate and stable boundary conditions. The applications to a backward-facing step flow at Re=155,000 reveal that the reattachment length is reasonably well predicted on appropriately refined mesh by all turbulence models, except the standard k-𝜖 model which about 13% underestimates the reattachment length regardless of the grid refinement.