• Title/Summary/Keyword: RA Channel

Search Result 164, Processing Time 0.027 seconds

A Study on Adaptive Pilot Beacon for Hard Handoff at CDMA Communication Network (CDMA 통신망의 하드핸드오프 지원을 위한 적응형 파일럿 비콘에 관한 연구)

  • Jeong Ki Hyeok;Hong Dong Ho;Hong Wan Pyo;Ra Keuk Hwawn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.922-929
    • /
    • 2005
  • This paper proposes an adaptive pilot beacon equipment for mobile communication systems based on direct spread spectrum technology which generates the pilot channel for handoff between base stations by using the information acquired from the downstream wireless signal regarding the overhead channel information. Such an adaptive pilot beacon equipment will enable low power operation since among the wireless signals, only the pilot channel will be generated and transmitted. The pilot channel in the downstream link of the CDMA receiver is used to acquire time and frequency synchronization and this is used to calibrate the offset for the beacon, which implies that time synchronization using GPS is not required and any location where forward receive signal can be received can be used as the installation site. The downstream link pilot signal searching within the CDMA receiver is performed by FPGA and DSP. The FPGA is used to perform the initial synchronization for the pilot searcher and DSP is used to perform the offset correction between beacon clock and base station clock. The CDMA transmitter the adaptive pilot beacon equipment will use the timing offset information in the pilot channel acquired from the CDMA receiver and generate the downstream link pilot signal synchronized to the base station. The intermediate frequency signal is passed through the FIR filter and subsequently upconverted and amplified before being radiated through the antenna.

A Low Density Parity Check Coding using the Weighted Bit-flipping Method (가중치가 부과된 Bit-flipping 기법을 이용한 LDPC 코딩)

  • Joh, Kyung-Hyun;Ra, Keuk-Hwan
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.115-121
    • /
    • 2006
  • In this paper, we proposed about data error check and correction on channel transmission in the communication system. LDPC codes are used for minimizing channel errors by modeling AWGN Channel as a VDSL system. Because LDPC Codes use low density parity bit, mathematical complexity is low and relating processing time becomes shorten. Also the performance of LDPC code is better than that of turbo code in long code word on iterative decoding algorithm. This algorithm is better than conventional algorithms to correct errors, the proposed algorithm assigns weights for errors concerning parity bits. The proposed weighted Bit-flipping algorithm is better than the conventional Bit-flipping algorithm and we are recognized improve gain rate of 1 dB.

Development of the Hydraulic Performance Graph Model and its Application (수리거동곡선 모형의 개발 및 적용)

  • Seo, Yongwon;Seo, Il Won;Shin, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1373-1382
    • /
    • 2014
  • This paper presents a hydraulic performance graph model in which the flow carrying capacity of a channel system was determined by accounting the interacting backwater effect among channel reaches and incoming lateral flow. The method utilizes hydraulic performance graphs (HPGs), and the method is applied to a natural channel Nakdong River to examine its applicability. This research shows that estimation results using HPG are close to records from the stage station and the results from a widely-accepted model, HEC-RAS. Assuming that a water level gage site is ungaged, water level estimations by HPGs compared with observation show that with a flood event, the HPGs underestimate in the water level ascension phase, but in the recession phase they overestimate results. The accuracy of estimation with HPGs was greatly improved by considering the time difference of flooding between the observation and estimation locations.

InGaAs-based Tunneling Field-effect Transistor with Stacked Dual-metal Gate with PNPN Structure for High Performance

  • Kwon, Ra Hee;Lee, Sang Hyuk;Yoon, Young Jun;Seo, Jae Hwa;Jang, Young In;Cho, Min Su;Kim, Bo Gyeong;Lee, Jung-Hee;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.230-238
    • /
    • 2017
  • We have proposed an InGaAs-based gate-all-around (GAA) tunneling field-effect transistor (TFET) with a stacked dual-metal gate (DMG). The electrical performances of the proposed TFET are evaluated through technology computer-aided design (TCAD) simulations. The simulation results show that the proposed TFET demonstrates improved DC performances including high on-state current ($I_{on}$) and steep subthreshold swing (S), in comparison with a single-metal gate (SMG) TFET with higher gate metal workfunction, as it has a thinner source-channel tunneling barrier width by low workfunction of source-side channel gate. The effects of the gate workfunction on $I_{on}$, the off-state current ($I_{off}$), and S in the DMG-TFETs are examined. The DMG-TFETs with PNPN structure demonstrate outstanding DC performances and RF characteristics with a higher n-type doping concentration in the $In_{0.8}Ga_{0.2}As$ source-side channel region.

A Study on Channel Flood Routing Using Nonlinear Regression Equation for the Travel Time (비선형 유하시간 곡선식을 이용한 하도 홍수추적에 관한 연구)

  • Kim, Sang Ho;Lee, Chang Hee
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.148-153
    • /
    • 2016
  • Hydraulic and hydrological flood routing methods are commonly used to analyze temporal and spatial flood influences of flood wave through a river reach. Hydrological flood routing method has relatively more simple and reasonable performance accuracy compared to the hydraulic method. Storage constant used in Muskingum method widely applied in hydrological flood routing is very similar to the travel time. Focusing on this point, in this study, we estimate the travel time from HEC-RAS results to estimate storage constant, and develop a non-linear regression equation for the travel time using reach length, channel slope, and discharge. The estimated flow by Muskingum model with storage constant of nonlinear equation is compared with the flow calculated by applying the HEC-RAS 1-D unsteady flow simulation. In addition, this study examines the effect on the weighting factor changes and interval reach divisions; peak discharge increases with the bigger weighting factor, and RMSE decreases with the fragmented division.

On Adaptive LDPC Coded MIMO-OFDM with MQAM on Fading Channels (페이딩 채널에서 적응 LDPC 부호화 MIMO-OFDM의 성능 분석)

  • Kim, Jin-Woo;Joh, Kyung-Hyun;Ra, Keuk-Hwan
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.80-86
    • /
    • 2006
  • The wireless communication based on LDPC and adaptive spatial-subcarrier coded modulation using MQAM for orthogonal frequency division multiplexing (OFDM) wireless transmission by using instantaneous channel state information and employing multiple antennas at both the transmitter and the receiver. Adaptive coded modulation is a promising idea for bandwidth-efficient transmission on time-varying, narrowband wireless channels. On power limited Additive White Gaussian Noise (AWGN) channels, low density parity check (LDPC) codes are a class of error control codes which have demonstrated impressive error correcting qualities, under some conditions performing even better than turbo codes. The paper demonstrates OFDM with LDPC and adaptive modulation applied to Multiple-Input Multiple-Output (MIMO) system. An optimization algorithm to obtain a bit and power allocation for each subcarrier assuming instantaneous channel knowledge is used. The experimental results are shown the potential of our proposed system.

The Frequency Adaptive antenna Matching Network Design for Improving Wireless LAN Performance (무선랜 송수신 특성 개선을 위한 주파수 적응형 안테나 정합 회로 구조 설계)

  • Park, Kyoung-Jin;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.4
    • /
    • pp.41-46
    • /
    • 2012
  • This paper suggested that the frequency adaptive antenna matching network design between AP and WLAN(Wireless Local Area Network) terminal for improving performance. The internet data service of the WLAN terminal is communicated through the AP and AP broadcasts the beacon signal including the assigned frequency channel. at that time the antenna matching network path is controlled beacon information after the WLAN terminal searching and synchronization a beacon information. and then the WLAN terminal communicate with AP. controlling the antenna matching network path according to channel information, The WLAN terminal is expected to improve RF output power and sensitivity performance. The VSWR(Voltage Standing Wave Ratio) performance of the designed antenna matching network is measured to about 1.1 ~ 1.2 and then it is operated by the channel information of the AP.

A Study on Measurement and Analysis of Pilot Channel Power at CDMA Communication Network (CDMA통신망에서 파일롯 채널전력 측정 및 분석에 관한 연구)

  • Jeong, Ki-Hyeok;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.31-39
    • /
    • 2007
  • In this paper, a system for real-time or periodic measurement and analysis of RF parameters such as forward transmit power and pilot power in CDMA base station systems is proposed. Such RF characteristic parameter measurement can be prevented from system fault and used to achieve optimal service quality and maximum investment return through cell coverage expansion, subscriber capacity increase and so on. For forward power measurement, the local oscillator frequency for the detector is varied so that the transmit power for all channels can be measured. The channel power measurement can be used to analyze the variation in transmit power for changes in voice traffic. By comparing to forward $E_c/I_o$, the pilot channel power can be deducted, which can be used to determine uy degradation in transmit section modules such as the high dover amplifier. Since an accurate analysis of carefully measured data using the CDMA level detector must be made, the system is designed so that measurement errors due to changes in crest factor with modulation method can be overcome.

The Effect Analysis of Compression Method on KOMPSAT Image Chain

  • Yong, Sang-Soon;Ra, Sung-Woong
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.431-437
    • /
    • 2007
  • Multi-Spectral Camera(MSC) on the KOMPSAT-2 satellite was developed and launched as a main payload to provide 1m of GSD(Ground Sampling Distance) for one(1) channel panchromatic imaging and 4m of GSD for four(4) channel multi-spectral imaging at 685km altitude covering l5km of swath width. Since the compression on MSC image chain was required to overcome the mismatch between input data rate and output date rate JPEG-like method was selected and analyzed to check the influence on the performance. In normal operation the MSC data is being acquired and transmitted with lossy compression ratio to cover whole image channel and full swath width in real-time. In the other hand the MSC performance have carefully been handled to avoid or minimize any degradation so that it was analyzed and restored in KGS(KOMPSAT Ground Station) during LEOP(Launch and Early Operation Phase). While KOMPSAT-2 had been developed, new compression method based upon wavelet for space application was introduced and available for next satellite. The study on improvement of image chain including new compression method is asked for next KOMPSAT which requires better GSD and larger swath width In this paper, satellite image chain which consists of on-board image chain and on-ground image chain including general MSC description is briefly described. The performance influences on the image chain between two on-board compression methods which are or will be used for KOMPSAT are analyzed. The differences on performance between two methods are compared and the better solution for the performance improvement of image chain on KOMPSAT is suggested.

Fault Diagnosis of Bearing Based on Convolutional Neural Network Using Multi-Domain Features

  • Shao, Xiaorui;Wang, Lijiang;Kim, Chang Soo;Ra, Ilkyeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1610-1629
    • /
    • 2021
  • Failures frequently occurred in manufacturing machines due to complex and changeable manufacturing environments, increasing the downtime and maintenance costs. This manuscript develops a novel deep learning-based method named Multi-Domain Convolutional Neural Network (MDCNN) to deal with this challenging task with vibration signals. The proposed MDCNN consists of time-domain, frequency-domain, and statistical-domain feature channels. The Time-domain channel is to model the hidden patterns of signals in the time domain. The frequency-domain channel uses Discrete Wavelet Transformation (DWT) to obtain the rich feature representations of signals in the frequency domain. The statistic-domain channel contains six statistical variables, which is to reflect the signals' macro statistical-domain features, respectively. Firstly, in the proposed MDCNN, time-domain and frequency-domain channels are processed by CNN individually with various filters. Secondly, the CNN extracted features from time, and frequency domains are merged as time-frequency features. Lastly, time-frequency domain features are fused with six statistical variables as the comprehensive features for identifying the fault. Thereby, the proposed method could make full use of those three domain-features for fault diagnosis while keeping high distinguishability due to CNN's utilization. The authors designed massive experiments with 10-folder cross-validation technology to validate the proposed method's effectiveness on the CWRU bearing data set. The experimental results are calculated by ten-time averaged accuracy. They have confirmed that the proposed MDCNN could intelligently, accurately, and timely detect the fault under the complex manufacturing environments, whose accuracy is nearly 100%.