• Title/Summary/Keyword: R.C. element

Search Result 447, Processing Time 0.027 seconds

Discrete Element Simulation of the Sintering of Composite Powders

  • Martina, C. L.;Olmos, L.;Schneiderb, L. C. R.;Bouvardc, D.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.262-263
    • /
    • 2006
  • The free sintering of metallic powders blended with non sintering inclusions is investigated by the Discrete Element Method (DEM). Each particle, whatever its nature (metallic or inclusion) is modeled as a sphere that interacts with its neighbors. We investigate the retarding effect of the inclusions on the sintering kinetics. Also, we present a simple coarsening model for the metallic particles, which allows large particles to grow at the expense of the smallest.

  • PDF

Remeshing techniques for r-adaptive and combined h/r-adaptive analysis with application to 2D/3D crack propagation

  • Askes, H.;Sluys, L.J.;de Jong, B.B.C.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.475-490
    • /
    • 2001
  • Remeshing strategies are formulated for r-adaptive and h/r-adaptive analysis of crack propagation. The relocation of the nodes, which typifies r-adaptivity, is a very cheap method to optimise a given discretisation since the element connectivity remains unaltered. However, the applicability is limited. To further improve the finite element mesh, a combined h/r-adaptive method is proposed in which h-adaptivity is applied whenever r-adaptivity is not capable of further improving the discretisation. Two and three-dimensional examples are presented. It is shown that the r-adaptive approach can optimise a discretisation at minimal computational costs. Further, the combined h/r-adaptive approach improves the performance of a fully r-adaptive technique while the number of h-remeshings is reduced compared to a fully h-adaptive technique.

A Study on the Sensitivity of Reinforced Concrete Element Design Factors (변형율속도변화에 대한 철근콘크리트부재 설계인자의 민감성 연구)

  • Sim, Jong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.9-14
    • /
    • 1989
  • A strain rate-dependent element model was used to study the loading rate-sensitivity of R/C beams and columns with different design factors. Conclusions were derived regarding the differences between the element axial/flexural performance under impulsive and quasi-static loads. Practical design formalas for predicting the loading rate-dependent axial and flexural strengths of R/C elements were also suggested.

  • PDF

Modeling Interconnect Wiring using the Partial Element Equivalent Circuit Approach in Time Domain (부분요소 등가회로를 이용한 시간영역에서의 인터커넥트 모델링 연구)

  • Park, Seol-Cheon;Yun, Seok-In;Won, Tae-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.67-75
    • /
    • 2002
  • In this Paper, we discuss the PEEC method and construct the PEEC equivalent circuit of the test structure and construct the system matrix, which was simulated by numerical analysis. And we got node voltages and currents. Constructing the equivalent circuit, we extracted the parasitic parameter(R, L, C)using the simulator, which is based on finite element method, hence we could simulate the transient analysis.

Nonlinear behavior of R/C cooling tower shells

  • Hara, Takashi;Kato, Shiro;Ohya, Makoto
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.541-552
    • /
    • 1997
  • In this paper the ultimate strength of the R/C cooling towers, which have initial imperfection and pre-cracked elements, is analyzed. The initial geometric imperfections arise from the unavoidable inaccuracies under the construction and the pre-cracks are assumed to be produced by the temperature stress gradients or cyclic loading under wind pressure and/or earthquake load. Both effects are strongly influenced on the strength of the R/C cooling tower shell structures. The reinforcing ratio is also the important factor to evaluate the ultimate strength of the R/C cooling tower shells. However we could not analyze these structures experimentally because of their large, analyses are the powerful schemes to evaluate the safety and reliability of these structures. The analyzed model is Port Gibson cooling tower shell. In the numerical analysis the geometric and material nonlinearities are taken into account.

The anchorage-slip effect on direct displacement-based design of R/C bridge piers for limiting material strains

  • Mergos, P.E.
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.493-513
    • /
    • 2013
  • Direct displacement-based design (DDBD) represents an innovative philosophy for seismic design of structures. When structural considerations are more critical, DDBD design should be carried on the basis of limiting material strains since structural damage is always strain related. In this case, the outcome of DDBD is strongly influenced by the displacement demand of the structural element for the target limit strains. Experimental studies have shown that anchorage slip may contribute significantly to the total displacement capacity of R/C column elements. However, in the previous studies, anchorage slip effect is either ignored or lumped into flexural deformations by applying the equivalent strain penetration length. In the light of the above, an attempt is made in this paper to include explicitly anchorage slip effect in DDBD of R/C column elements. For this purpose, a new computer program named RCCOLA-DBD is developed for the DDBD of single R/C elements for limiting material strains. By applying this program, more than 300 parametric designs are conducted to investigate the influence of anchorage slip effect as well as of numerous other parameters on the seismic design of R/C members according to this methodology.

ON THE LAWS OF NILPOTENT POINTED-GROUPS

  • Ali, Zafar;Majeed, Abdul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.778-783
    • /
    • 1998
  • A pointed-group is an ordered pair (G,c) where G is a group and c is a specific element of G. Thus a pointed-group is a group together with a distinguish element. The aim of this paper is to generalize the result proved by R.C. Lyndon in [4], that every nilpotent group variety is finitely based for its laws.

  • PDF

Finite Element Analysis Through Mechanical Property Test and Elasto-plastic Modeling of 2.5D Cf/SiCm Composite Analysis (2.5D Cf/SiCm 복합재의 기계적 물성 시험과 탄소성 모델링을 통한 유한요소해석)

  • Lee, MinJung;Kim, Yeontae;Lee, YeonGwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.663-670
    • /
    • 2020
  • A study on mechanical property characterization and modeling technique was carried out to approximate the behaviour of structures with 2.5D C/SiC material. Several tensile tests were performed to analyze the behaviour characteristics of the 2.5D C/SiC material and elastic property was characterized by applying a mathematical homogenization and a modified rule of mixture. SiC matrix representing the elasto-plastic behavior approximates as a bilinear function. Then the equivalent yield strength and equivalent plastic stiffness were calculated by minimizing errors in experiment and approximation. RVE(Representative Volume Element)was defined from the fiber and matrix configuration of 2.5D C/SiC and a process of calculating the effective stiffness matrix by applying the modified rule of mixture to RVE was implemented in the ABAQUS User-defined subroutine. Finite element analysis was performed by applying the mechanical properties of fiber and matrix calculated based on the proposed process, and the results were in good agreement with the experimental results.

ON 𝜙-PSEUDO-KRULL RINGS

  • El Khalfi, Abdelhaq;Kim, Hwankoo;Mahdou, Najib
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1095-1106
    • /
    • 2020
  • The purpose of this paper is to introduce a new class of rings that is closely related to the class of pseudo-Krull domains. Let 𝓗 = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. Let R ∈ 𝓗 be a ring with total quotient ring T(R) and define 𝜙 : T(R) → RNil(R) by ${\phi}({\frac{a}{b}})={\frac{a}{b}}$ for any a ∈ R and any regular element b of R. Then 𝜙 is a ring homomorphism from T(R) into RNil(R) and 𝜙 restricted to R is also a ring homomorphism from R into RNil(R) given by ${\phi}(x)={\frac{x}{1}}$ for every x ∈ R. We say that R is a 𝜙-pseudo-Krull ring if 𝜙(R) = ∩ Ri, where each Ri is a nonnil-Noetherian 𝜙-pseudo valuation overring of 𝜙(R) and for every non-nilpotent element x ∈ R, 𝜙(x) is a unit in all but finitely many Ri. We show that the theories of 𝜙-pseudo Krull rings resemble those of pseudo-Krull domains.

CHARACTERIZING S-FLAT MODULES AND S-VON NEUMANN REGULAR RINGS BY UNIFORMITY

  • Zhang, Xiaolei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.643-657
    • /
    • 2022
  • Let R be a ring and S a multiplicative subset of R. An R-module T is called u-S-torsion (u-always abbreviates uniformly) provided that sT = 0 for some s ∈ S. The notion of u-S-exact sequences is also introduced from the viewpoint of uniformity. An R-module F is called u-S-flat provided that the induced sequence 0 → A ⊗R F → B ⊗R F → C ⊗R F → 0 is u-S-exact for any u-S-exact sequence 0 → A → B → C → 0. A ring R is called u-S-von Neumann regular provided there exists an element s ∈ S satisfying that for any a ∈ R there exists r ∈ R such that sα = rα2. We obtain that a ring R is a u-S-von Neumann regular ring if and only if any R-module is u-S-flat. Several properties of u-S-flat modules and u-S-von Neumann regular rings are obtained.