• Title/Summary/Keyword: R. albus

Search Result 45, Processing Time 0.029 seconds

Expression and Characterization of Trehalose Biosynthetic Modules in the Adjacent Locus of the Salbostatin Gene Cluster

  • Choeng, Yong-Hoon;Yang, Ji-Yeon;Delcroix, Gaetan;Kim, Yoon-Jung;Chang, Yong-Keun;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1675-1681
    • /
    • 2007
  • The pseudodisaccharide salbostatin, which consists of valienamine linked to 2-amino-1,5-anhydro-2-deoxyglucitol, is a strong trehalase inhibitor. From our Streptomyces albus ATCC 21838 genomic library, we identified thirty-two ORFs in a 37-kb gene cluster. Twenty-one genes are supposed to be a complete set of modules responsible for the salbostatin biosynthesis. Through sequence analysis of the gene cluster, some of the upstream gene products (SalB, SalC, SalD, SalE, and SalF) revealed functional resemblance with trehalose biosynthetic enzymes. On the basis of this rationale, we isolated the five genes (salB, salC, salD, salE, and salF) from the S. albus ATCC 21838 and cloned them into the expression vector pWHM3. We demonstrated the noticeable expression and accumulation of trehalose, using only the five upstream biosynthetic gene cluster of salbostatin, in the transformed Streptomyces lividans TK24. Finally, 490 mg/l trehalose was produced by fermentation of the transformant with sucrosedepleted R2YE media.

Monoamine Oxidase Inhibitory Coumarins from the Aerial Parts of Dictamnus albus

  • Jeong, Seon-Hwa;Han, Xiang Hua;Hong, Seong-Su;Hwang, Ji-Sang;Hwang, Ji-Hye;Lee, Dong-Ho;Lee, Myung-Koo;Ro,, Jai-Seup;Hwang, Bang-Yeon
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1119-1124
    • /
    • 2006
  • The methanol extract from the aerial parts of Dictamnus albus was active in inhibiting monoamine oxidase (MAO) from the mouse brain. Activity-guided fractionation led to the isolation of four known coumarins, 7-(6'R-hydroxy-3', 7'-dimethyl-2'E, 7'-octadienyloxy) coumarin (1), auraptene (2), umbelliferone (3), and xanthotoxin (4), as active compounds along with an inactive alkaloid, skimmianine (5). Compounds 1 and 2 inhibited MAO activity in a concentration-dependent manner with $IC_{50}$ values of 0.7 and $1.7\;{\mu}M$, respectively. Compounds 1 and 2 showed a slight and potently selective inhibitory effect against MAO-B ($IC_{50}\;0.5\;and\;0.6\;{\mu}M,\;respectively$) compared to MAO-A ($IC_{50}\;1.3\;and\;34.6\;{\mu}M,\;respectively$). According to kinetic analyses derived by Lineweaver-Burk reciprocal plots, compounds 1 and 2 exhibited a competitive inhibition to MAO-B.

NECESSITY OF READY ELECTRON DISPOSAL AND INTERSPECIES HYDROGEN TRANSFER FOR THE UTILIZATION OF ETHANOL BY RUMEN BACTERIA

  • Hino, T.;Mukunoki, H.;Imanishi, K.;Miyazaki, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.511-517
    • /
    • 1992
  • Ethanol was utilized by mixed rumen microbes, but addition of pentachlorophenol (25 mg/l), a methanogen inhibitor, suppressed the utilization of ethanol. Carbon monoxide (50% of the gas phase), a hydrogenase inhibitor, more strongly suppressed the utilization of ethanol, propanol, and butanol. These results suggest that the major ethanol utilizers are $H_2$ producers. Ethanol utilization was depressed at low pH (below 6.0). Since methanogens were shown to be relatively resistant to low pH, it appears that ethanol utilizers are particularly sensitive to low pH. Ruminococcus albus and R. flavefaciens in mono-culture produced ethanol from carbohydrate (glucose and cellobiose), even when a high level (170 mM) of ethanol was present. Ethanol was not utilized even in the absence of carbohydrate, but the co-culture of these bacteria with methanogens resulted in the utilization of ethanol, i.e., when $H_2$ was rapidly converted to $CH_4$, R. albus and R. flavefaciens utilized ethanol. These results suggest that ethanol is utilized when the electrons liberated by the oxidation of ethanol are rapidly removed, and ready electron disposal in ethanol-utilizing, $H_2$-producing bacteria is accomplished by the interspecies transfer of $H_2$.

Study on the Relationships between Rice Straw Degradation and Changes of Fibrolytic Bacteria Population by in Vitro Rumen Fermentation (In Vitro 반추위 발효를 통한 볏짚 분해와 섬유소 박테리아 군집 변화의 관계 연구)

  • Sung, Ha Guyn
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • This study was to research the relationships between rice straw degradation and changes of fibrolytic bacteria population during the in vitro rumen fermentation. Dry matter(DM) digestion of rice straw and population of fibrolytic bacteria were measured at the 0. 4, 8, 12 and 48 hours during the incubation. The populations of F. succinogenes. R. albus and R. flavefaciens were defined as log copy number of 16S rDNA by technical method of Quantitative real-time PCR. Total population of F. succinogenes, R. flavefaciens and R. albus was sum of bactera attached on rice straw and suspended in medium. It's population was increased with incubation, reached top level of 29.0 Log copy No at the 24 hour and then decreased. In the meantime, DM digestion of rice straw showed the higher increasement from the 8 hour to the 24 hour than from the 0 hour to the 8 hour, and then a slowdown in increasing trend of digestibility. Attachments of F. succinogenes, R. flavefaciens and R. albus were detected immediately after start of in vitro rumen incubation. At the same time, the colonized bacterial share were respectively 34.5%, 84.4% and 67.9% in total population. All of them was reached the highest colonized bacterial share above 94.7% at the 4 hour incubation. However population of attached bacteria was shown the highest level at the 12 hour or the 24 hour incubation. Kinetics of colonization were formed area of top speed from the 12 hour to the 24 hour and respectively reached 10.33, 9.28 및 8.30 Log copy No/h/g DM at the 24 hour by F. succinogenes, R. flavefaciens and R. albus. The kinetics of rice straw degradation was formed top level of 0.95% DM/h at the 24 hour. The present results gave clear evidence that degradation of rice straw was increased with the development of total fibrolytic bacteria in process of rumen fermentation. Also, their attachment was largely occurred immediately after insertion of rice straw, the colonized bacteria was actively proliferated, and then degradation of rice straw was maximized.

EFFECTS OF CHEMICAL TREATMENTS OF BARLEY STRAW ON LEACHING, AND DIGESTIBILITY BY RUMEN FLUID AND CELLULOLYTIC BACTERIA

  • Kudo, H.;Cheng, K.J.;Rode, L.M.;Abdullah, N.;Ho, Y.W.;Hussain, H.Y.;Jalaludin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.389-396
    • /
    • 1994
  • Effects of chemical treatments on in sacco and in vitro digestibility of barley straw by rumen fluid and pure cultures of cellulolytic bacteria were studied to evaluate the pretreatment and to improve the poor quality feed. Chemicals were applied by dissolving them in water equivalent to 40% of the weight of the straw (dry matter basis). Pretreatment with 5% NaOH yielded the largest increase in sacco digestion followed by pretreatment with 2% $(NH_4)_2SO_3$, 2.6% $NH_4OH$, 1.6% $NaHSO_3$ and untreated straw (control). In sacco dry matter digestibility of straw treated with NaOH and $(NH_4)_2SO_3$ continued to increase as the concentration of chemical increased (1 to 7.5%), as it was the in vitro dry matter loss by leaching. Treatment of barley straw with 5% NaOH enhanced significantly (p < 0.01) in vitro digestibility by rumen fluid, Fibrobacter suceinogenes and Ruminococcus albus though the fermentation products by cellulolytic bacteria were low, whereas the treatment with 5% $(NH_4)_2SO_3$ inhibited in vitro digestibility by F. succinogenes and R. albus together with lower fermentation products. Dry matter loss by leaching and bacterial digestion from barley straw treated with NaOH and $(NH_4)_2SO_3$ suggested the effect of pretreatment with these chemicals were based on leaching, and the cellulolytic bacteria had little to do with digestion.

Screening and Identification of cellulolytic bacteria in the rumen of Korean native cattle (한우의 반추위로부터 섬유소 분해균의 탐색 및 동정)

  • Kim, Tae Il;Baik, Soon yong;Joo, Yi Seok;Yoon, Young Dhuk
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.91-95
    • /
    • 1998
  • Cellulase producing microorganisms, GPC-1, GPC-2, GNR-1 GNR-2, and GNR-3, were screened from the Rumen fluid of Korean Native Cattle. Isolated GPC-1 and GPC-2 were identified as Ruminococcus sp. according to results of the Gram stain and anaerobic characteristics. Based on morphological and physicochemical identification, the isolate GPC-1 and GPC-2 were identified as strains of Ruminococcus albus and Ruminococcus flavefaciens, respectively. Isolated GNR-1 GNR-2 and GNR-3 were identified as Bacteroides sp., Butyrivibrio sp. and Clostridium sp. according to results of the Gram stain, $H_2S$ producition and spore formation, respectively. Based on morphological and physicochemical identification, the isolate GNR-1 GNR-2 and GNR-3 were identified as strains of Bacteroides succinogenes, Butyrivibrio fibrisolvens and Clostridium cellobioparum, respectively.

  • PDF

Ecological Control of Invasive Alien Species, American Bullfrog (Rana catesbeiana) Using Native Predatory Species (자생종 포식자를 이용한 침입외래종 황소개구리(Rana catesbeiana)의 생태적 제어에 관한 연구)

  • No, Sun-Ho;Jung, Jin-Seok;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.1
    • /
    • pp.54-61
    • /
    • 2017
  • We investigate predation rates of larvae and juveniles of Rana catesbeiana by using six native predatory fishes and six birds to select effective species to ecological control and management of R. catesbeiana that is invasive alien species and affects seriously wetland in Korea. Among freshwater fishes, Pseudobagrus fulvidraco, Silurus asotus and Channa argus ate larvae and juveniles of R. catesbeiana, and prefer the former, however Opsariichthys uncirostris, Monopterus albus and Anguilla japonica didn't eat at all. Six experimental water birds, Cygnus columbianus, Cygnus cygnus, Anas crecca, Aix galericulata, Anas penelope and Anas formosa nerver ate them. We were able to confirm control of R. catesbeiana probability using the native predatory fishes in Korea wetland.

Influence of Yeast Fermented Cassava Chip Protein (YEFECAP) and Roughage to Concentrate Ratio on Ruminal Fermentation and Microorganisms Using In vitro Gas Production Technique

  • Polyorach, S.;Wanapat, M.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.36-45
    • /
    • 2014
  • The objective of this study was to determine the effects of protein sources and roughage (R) to concentrate (C) ratio on in vitro fermentation parameters using a gas production technique. The experimental design was a $2{\times}5$ factorial arrangement in a completely randomized design (CRD). Factor A was 2 levels of protein sources yeast fermented cassava chip protein (YEFECAP) and soybean meal (SBM) and factor B was 5 levels of roughage to concentrate (R:C) ratio at 80:20, 60:40, 40:60, 20:80, and 0:100, respectively. Rice straw was used as a roughage source. It was found that gas production from the insoluble fraction (b) of YEFECAP supplemented group was significantly higher (p<0.05) than those in SBM supplemented group. Moreover, the intercept value (a), gas production from the insoluble fraction (b), gas production rate constants for the insoluble fraction (c), potential extent of gas production (a+b) and cumulative gas production at 96 h were influenced (p<0.01) by R:C ratio. In addition, protein source had no effect (p>0.05) on ether in vitro digestibility of dry matter (IVDMD) and organic (IVOMD) while R:C ratio affected the IVDMD and IVOMD (p<0.01). Moreover, YEFECAP supplanted group showed a significantly increased (p<0.05) total VFA and $C_3$ while $C_2$, $C_2:C_3$ and $CH_4$ production were decreased when compared with SBM supplemented group. In addition, a decreasing R:C ratio had a significant effect (p<0.05) on increasing total VFA, $C_3$ and $NH_3$-N, but decreasing the $C_2$, $C_2:C_3$ and CH4 production (p<0.01). Furthermore, total bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus populations in YEFECAP supplemented group were significantly higher (p<0.05) than those in the SBM supplemented group while fungal zoospores, methanogens and protozoal population remained unchanged (p>0.05) as compared between the two sources of protein. Moreover, fungal zoospores and total bacteria population were significantly increased (p<0.01) while, F. succinogenes, R. flavefaciens, R. albus, methanogens and protozoal population were decreased (p<0.01) with decreasing R:C ratio. In conclusion, YEFECAP has a potential for use as a protein source for improving rumen fermentation efficiency in ruminants.

Effects of Surfactant Tween 80 on Forage Degradability and Microbial Growth on the In vitro Rumen Mixed and Pure Cultures

  • Goto, M.;Bae, H.;Lee, S.S.;Yahaya, M.S.;Karita, S.;Wanjae, K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.672-676
    • /
    • 2003
  • Effect of a surfactant Tween 80 on the bacterial growth in the rumen was examined on the in vitro pure cultures of Streptococcus bovis, Selenomonas ruminantium, Butyrivibrio fibrisolvens, Prevotella ruminicola, Megasphaera elsidenni, Fibrobacta succinogenes, Ruminanococcus albus and Ruminococcus flavefaciens. Dry matter degradability (DMD), concentrations and compositions of volatile fatty acids (VFA), and the most probable number (MPN) of cellulolytic bacteria and total number of bacteria in the presence of Tween 80 were also examined on the in vitro rumen mixed culture either with barley grain or orchardgrass hay. The growth of S. bovis, S. ruminantium, B. fibrisolvens, P. ruminicola, M. elsidenni and F. succinogenes were significantly higher (p<0.05) at over 0.05% concentrations of Tween 80 than those of the control cultures, while was not changed with R. albus and R. flavefaciens. With rumen mixed culture the DMD of barley grain and orchardgrass hay was significantly higher (p<0.05) at a 0.2% concentration of Tween 80 than the control, being reflected in the significantly higher (p<0.05) VFA production (mmol $g^{-1}$DDM) with orchardgrass hay. The higher (p<0.05) ratio of propionate to acetate at a 0.2% concentration of Tween 80 was also observed with orchardgrass hay, showing a similar trend with barley grain. No changes in the total bacterial number and MPN of cellulolytic bacteria were observed.

Effects of Yeast Culture Supplementation on Rice Straw Digestibility and Cellulolytic Bacterial Community in the Rumen (볏짚 조사료에 대한 효모 배양물 첨가가 반추위 소화율 및 섬유소 분해균의 군락 변화에 미치는 영향)

  • Sung, Ha Guyn
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.41-49
    • /
    • 2013
  • In vitro and in situ incubation studies were conducted to determine effects of yeast culture supplements (Saccharomyces cerevisiae) on cellulolytic bacterial function and fiber digestion in rice straw. In vitro dry matter digestibility of rice straw gradually increased according to supplemental levels of yeast culture (0.0, 0.2, 0.4, 0.6, 0.8 and 1.0%). Digestibility of rice straw started to increase apparently when yeast culture was added more than 0.6% level (p<0.05). Also, we reconfirmed that in vitro dry matter digestibility was significantly increased by 0.6% of yeast culture addition in 4% NaOH treated and non-treated rice straws (p<0.05). When in situ dry matter digestibility was tested in Korean native goats fed basal diet or experimental diet which contained 1.0% of yeast culture, the yeast culture feeding improved in situ dry matter digestibility in both 4% NaOH treated and non-treated rice straws (p<0.05). In case of real-time PCR monitoring cellulolytic bacterial function, the bacterial population attached on rice straw showed the increasing trends with higher level of yeast culture spraying on rice straw. F. succinogenes and R. flavefaciens were significantly increased in accordance to spraying levels of yeast culture (0.0, 0.1 and 0.3%) at both 12 and 24 hrs of in situ incubation (p<0.05). R. albus was significantly higher population in yeast culture spraying than non-soraying at 12 hrs of in situ incubation (p<0.05). These bacterial populations were showed the increasing trends with digestibility enhancement of rice straw according to the higher levels of yeast culture supplement. Overall, these results clearly suggest that the presence of yeast culture result in noticeable increase of rice straw digestion, which is modulated via good effect on cellulolytic bacterial attachment to fiber substrates.