DOI QR코드

DOI QR Code

Study on the Relationships between Rice Straw Degradation and Changes of Fibrolytic Bacteria Population by in Vitro Rumen Fermentation

In Vitro 반추위 발효를 통한 볏짚 분해와 섬유소 박테리아 군집 변화의 관계 연구

  • 성하균 (상지대학교 동물자원과학과)
  • Received : 2017.01.23
  • Accepted : 2017.03.19
  • Published : 2017.03.30

Abstract

This study was to research the relationships between rice straw degradation and changes of fibrolytic bacteria population during the in vitro rumen fermentation. Dry matter(DM) digestion of rice straw and population of fibrolytic bacteria were measured at the 0. 4, 8, 12 and 48 hours during the incubation. The populations of F. succinogenes. R. albus and R. flavefaciens were defined as log copy number of 16S rDNA by technical method of Quantitative real-time PCR. Total population of F. succinogenes, R. flavefaciens and R. albus was sum of bactera attached on rice straw and suspended in medium. It's population was increased with incubation, reached top level of 29.0 Log copy No at the 24 hour and then decreased. In the meantime, DM digestion of rice straw showed the higher increasement from the 8 hour to the 24 hour than from the 0 hour to the 8 hour, and then a slowdown in increasing trend of digestibility. Attachments of F. succinogenes, R. flavefaciens and R. albus were detected immediately after start of in vitro rumen incubation. At the same time, the colonized bacterial share were respectively 34.5%, 84.4% and 67.9% in total population. All of them was reached the highest colonized bacterial share above 94.7% at the 4 hour incubation. However population of attached bacteria was shown the highest level at the 12 hour or the 24 hour incubation. Kinetics of colonization were formed area of top speed from the 12 hour to the 24 hour and respectively reached 10.33, 9.28 및 8.30 Log copy No/h/g DM at the 24 hour by F. succinogenes, R. flavefaciens and R. albus. The kinetics of rice straw degradation was formed top level of 0.95% DM/h at the 24 hour. The present results gave clear evidence that degradation of rice straw was increased with the development of total fibrolytic bacteria in process of rumen fermentation. Also, their attachment was largely occurred immediately after insertion of rice straw, the colonized bacteria was actively proliferated, and then degradation of rice straw was maximized.

본 연구는 반추동물이 볏짚을 소화하는 과정 중에 주요 섬유소 분해 박테리아의 분포 변화를 연구하여 반추위내 볏짚이용효율을 증진시키기 위한 진보적 연구 자료를 제공하고자 실시하였다. 본 연구를 수행하기 위하여 분쇄 볏짚을 기질로 사용한 In vitro 반추위 발효를 실시하였으며, 배양 0. 4, 8, 12, 48시간에 볏짚 건물 소화율 및 섬유소 분해 박테리아 균수 변화를 조사하였다. 섬유소 분해 박테리아 균수는 F. succinogenes. R. albus와 R. flavefaciens를 대상으로 Quantitative real-time PCR을 이용하여 16S rDNA의 copy No의 log값(Log copy No)을 측정하였다. 섬유소 분해 박테리아의 총 균수는 F. succinogenes, R. albus와 R. flavefaciens의 볏짚 표면 부착 및 배양액내 부유 박테리아의 총합으로 배양 시간에 따라 증식을 하여 24시간에서 최고 군집(29.0 Log copy No)을 형성하고, 이후 감소하였다. 이에 볏짚 소화율도 24시간까지 점점 큰 폭으로 증가하였고, 이후에는 점점 둔화되는 경향을 나타냈다. F. succinogenes, R. flavefaciens 및 R. albus는 배양 시작 즉시 볏짚 표면에 부착이 발생됨을 발견하였으며, 이때 이들의 부착 군집의 비율은 각각 34.5%, 84.4% 및 67.9%로 차지하였다. 그리고 이들 섬유소 분해 박테리아의 볏짚 부착 비율은 모든 균수가 공히 배양 4시간째부터 94.7% 이상 최고 수준에 이르렀고, 부착 균수는 균종에 따라 각각 배양 12시간 또는 24시간째에 최고 수준을 나타냈다. F. succinogenes, R. flavefaciens 및 R. albus의 최고 수준의 볏짚 표면 부착 속도는 배양 12시간에 시작되어 배양 24시간에 각각 10.33, 9.28 및 8.30 Log copy No/h/g DM에 도달하였다. 그리고 섬유소 분해 속도는 표면 부착 속도보다 좀 늦은 배양 24시간에 0.95% DM/h로 최고 정점에 도달하였다. 따라서 본 연구결과는 반추위 발효 진행 과정에서 섬유소 분해 박테리아 총균의 증식에 따라 조사료의 소화가 증가되며, 상당히 많은 섬유소 분해 박테리아들이 조사료 유입과 동시에 표면 부착이 발생하고, 이들 부착 섬유소 분해 박테리아의 활성화가 먼저 진행된 후에 섬유소 분해 활성화가 이루어져야 조사료 소화의 극대화를 가져올 수 있다는 사실을 제시하여 주었다.

Keywords

References

  1. Akin, D.E. and Barton, F.E., 1983. Rumen microbial attachment and degradation of plant cell walls. Federation. Proceeding. 42:114-121.
  2. Cheng, K.J. and Costerton, J.W. 1980. Adhesive bacteria. Their role in digestion of plant material, urea and ephithelial cells. Pages 225-250 in digestive Physiology and Metabolism in Ruminants. Ruchebusch, Y. and Thivend, P. Eds, MTP press Ltd., Lancaster, England.
  3. Devandra, C. 1982. Perspectives in the utilization of untreated rice straw by ruminants in Asia. In: The utilization of fibrous agricultural residue as animal feeds. ed. P. T. Doyle. School of Agric. and Foresty. Univ. of Melvourne. Aust.
  4. Forsberg, D.W., Cheng, K.J. and White, B.A. 1997. Polysaccharide degradation in the rumen and large intestine. In Gastrointestinal Microbiology, R.I. Mackie aqnd B.A. White(Eds), Chapman and Hall, New york, U.S.A, p319-379.
  5. Hungate, R.E. 1966. The Rumen and Its Microbes. Academic Press. New York, N. Y.
  6. Hwang, I.H., Lee, C.H. Kim, S.W., Sung, H.G., Lee, S.Y., Lee, S.S., Hong, H., Kwan, Y.C. and Ha, J.K. 2008. Effects of mixtures of Tween80 and cellulolytic enzymes on nutrient digestion and cellulolytic bacterial adhesion. Asian-Aust. J. Anim. Sci. 21:1604-1609. https://doi.org/10.5713/ajas.2008.80333
  7. Jankson, M.G. 1977. The alkali treatment of straw. Anim. Feed Sci. Technol. 2:105-116. https://doi.org/10.1016/0377-8401(77)90013-X
  8. Khampa, S.,M. Wanapat, C. Wachirapakorn, N. Nontasol, M. Wattiaux, A. and . Rowlison, P. 2006. Effect of levels of sodium DL-malate supplementation on ruminal fermentation efficiency of concentrates containing high levels of cassava chip in dairy steers. Asian-Aust. J. Anim. Sci. 19:368-375. https://doi.org/10.5713/ajas.2006.368
  9. Koike, S. and Kobayashi, Y. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361-366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  10. Koike, S., Pan, J., Kobayashi, Y. and Tanaka, K. 2003. Kinestics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy Sci. 86:1429-1435. https://doi.org/10.3168/jds.S0022-0302(03)73726-6
  11. Krause, D.O. and Russell, J.B. 1996. How many ruminal bacteria are there? J. Dairy Sci. 79:1467-1475. https://doi.org/10.3168/jds.S0022-0302(96)76506-2
  12. McAllister, T.A., Bae, H.D., Jones, G.A. and Cheng, K.J. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018. https://doi.org/10.2527/1994.72113004x
  13. McDougall, E.I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109. https://doi.org/10.1042/bj0430099
  14. Michalet-Doreau, B., Fernandez, I., Peyron, C., Millet, L. and Fonty, G. 2001. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents. Reprod. Nutr. Dev. 41:187-194. https://doi.org/10.1051/rnd:2001122
  15. Minato, H., Mitsumori, M. and Cheng, K.J. 1993. Attachment of microorganisms to solid substrates in the rumen. Pages 139-145 in Proc. MIE bioforum on Genetics, Biochemistry and Ecology of Lignocellulose Degradation. Institut Pasteur, Paris, France.
  16. Min J.K., Sung H.G., Santi D.U., Ha J.K., and Lee S.S. 2013. Effects of Methylcellulose on Fibrolytic Bacterial Detachment and In vitro Degradation of Rice Straw. Asian Australas. J. Anim. Sci. 10 : 1459-1465
  17. Minato, H., Mitsumori, M. and Cheng, K.J. 1993. Attachment of microorganisms to solid substrates in the rumen. Pages 139-145 in Proc. MIE bioforum on Genetics, Biochemistry and Ecology of Lignocellulose Degradation. Institut Pasteur, Paris, France.
  18. Miron, J., Ben-Ghedalia, D. and Morrisont, M. 2001. Adhesion mechanism of rumen cellulolytic bacteria. J. Dairy Sci. 84:1294-1309. https://doi.org/10.3168/jds.S0022-0302(01)70159-2
  19. Pan, J., Koike, S., Suzuki, T., Ueda, K., Kobayashi, Y., Tanaka, K. and Okubo. M. 2003. Effect of mastication on degradation of orchardgrass hay stem by rumen microbes: fibrolytic enzyme activities and microbial attachment. Anim. Feed Sci. Technol. 106:69-79. https://doi.org/10.1016/S0377-8401(03)00039-7
  20. Pell, A.N. and Schofield, P. 1993. Microbial adhesion and degradation of plant cell walls Pages 397-423 in Forage Cell Wall Structure and Digestibility. R. D. Hatfield, H. G. Jung, J. Ralph, D. R. Buxton, D. R. Mertens, and P. J. Weimer, eds ASA-CSSA-SSSA, Madison, WI.
  21. Purdy, K.J., Embley, T.M., Takii, S. and Nedwell, D.B. 1996. Rapid extraction of DNA and RNA from sediments by novel hydroxyapatite spin-column method. Appl. Environ. Microbial. 62:3905-3970.
  22. Russell, J.B. and Rychlik, J.L. 2001. Factors that alter rumen microbial ecology. Science. 292:1119-1122. https://doi.org/10.1126/science.1058830
  23. Sung, H.G,. Min, D.M., Kim, D.K., Li, D.Y., Kim, Y.H., Upadhaya, S.D. and Ha, J.K. 2006. Influence of transgenic corn on the In vitro rumen microbial fermentation. Asian-Aust. J. Anim. Sci. 19:1761-1768. https://doi.org/10.5713/ajas.2006.1761
  24. Sung H.G., Kim M.J., Upadhaya1 S.D., Ha J.K. and Lee S.S.. 2013. Effects of methylcellulose on cellulolytic bacteria attachment and rice straw degradation in the In vitro rumen fermentation. Asian Australas. J. Anim. Sci. 26:1276-1281. https://doi.org/10.5713/ajas.2013.13217
  25. Sung, H.G., Kobayashi, Y., Chang, J., Ha, A., Hwang, I.H. and Ha, J.K. 2009. Low ruminal pH reduces dietary fiber digestion via reduced microbial attachment. Asian-Aust. J. Anim, Sci. 20:200-207.
  26. Sung, H.G. 2013. The Effects of yeast culture utilization on rice straw digestibility and cellulolytic bacterial function in ruminant. J. Animal Science and Technology. 55:41-49. https://doi.org/10.5187/JAST.2013.55.1.41
  27. Sung, H.G. 2014. Study on roughage degradation and adhesion of rumen fibrolytic bacteria by Real-Time PCR. J. Animal Science and Technology. 34:60-67.
  28. Tajima, K., Aminov, R.I., Nagamine, T., Matsui, H., Nakamura, M. and Benno, Y. 2001. Diet-Dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microb. 2766-2744.
  29. Williams, A.G. and Strachan, N.H. 1984. Polysaccharide degrading enzymes in microbial populations from the liquid and solid fractions of bovine rumen digesta. Can. J. Anim. Sci. 64:58-59. https://doi.org/10.4141/cjas84-156