• Title/Summary/Keyword: R-wave detection

Search Result 116, Processing Time 0.027 seconds

R Wave Detection and Advanced Arrhythmia Classification Method through QRS Pattern Considering Complexity in Smart Healthcare Environments (스마트 헬스케어 환경에서 복잡도를 고려한 R파 검출 및 QRS 패턴을 통한 향상된 부정맥 분류 방법)

  • Cho, Iksung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • With the increased attention about healthcare and management of heart diseases, smart healthcare services and related devices have been actively developed recently. R wave is the largest representative signal among ECG signals. R wave detection is very important because it detects QRS pattern and classifies arrhythmia. Several R wave detection algorithms have been proposed with different features, but the remaining problem is their implementation in low-cost portable platforms for real-time applications. In this paper, we propose R wave detection based on optimal threshold and arrhythmia classification through QRS pattern considering complexity in smart healthcare environments. For this purpose, we detected R wave from noise-free ECG signal through the preprocessing method. Also, we classify premature ventricular contraction arrhythmia in realtime through QRS pattern. The performance of R wave detection and premature ventricular contraction arrhythmia classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction. The achieved scores indicate the average of 98.72% in R wave detection and the rate of 94.28% in PVC classification.

PVC Classification Algorithm Through Efficient R Wave Detection

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.338-345
    • /
    • 2013
  • Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation like ventricular fibrillation and ventricular tachycardia in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and the prevention of possible life threatening cardiac diseases. Most methods for detecting arrhythmia require pp interval, or the diversity of P wave morphology, but they are difficult to detect the p wave signal because of various noise types. Thus, it is necessary to use noise-free R wave. So, the new approach for the detection of PVC is presented based on the rhythm analysis and the beat matching in this paper. For this purpose, we removed baseline wandering of low frequency band and made summed signals that are composed of two high frequency bands including the frequency component of QRS complex using the wavelet filter. And then we designed R wave detection algorithm using the adaptive threshold and window through RR interval. Also, we developed algorithm to classify PVC using RR interval. The performance of R wave and PVC detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate average detection rate of 99.76%, sensitivity of 99.30% and specificity of 98.66%; accuracy respectively for R wave and PVC detection.

An R-wave Detection method in ECG Signal Using Refractory Period (ECG 신호에서 불응기를 이용한 R-파 검출 방법)

  • Kim, Jin-Sub;Kim, Jea-Soo;Kim, Jeong-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.93-101
    • /
    • 2013
  • The accurate detection of R-wave is important for other feature extraction in ECG, and R-wave has a lot of medical information about heart. Numerous R-wave detection algorithms have been studied on the ECG signal shape analysis, but it was difficult to find accurate R-wave when the shape of R-wave is similar to the shape of P-wave. This paper presents an R-wave detection method based on the refractory period that is the period of depolarization and repolarization of the cell membrane after excitation. And we also use the shape of kurtosis in the refractory period. The proposed method is validated using the ECG records of the MIT-BIH arrhythmia database. Experimental results show that the proposed method significantly outperforms other method in case of 105 and 108 record that have R-wave similar to P-wave, as well as other records.

R Wave Detection Algorithm Based Adaptive Variable Threshold and Window for PVC Classification (PVC 분류를 위한 적응형 문턱치와 윈도우 기반의 R파 검출 알고리즘)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1289-1295
    • /
    • 2009
  • Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation like ventricular fibrillation and ventricular tachycardia in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and prevention of possible life threatening cardiac diseases. Particularly, in the healthcare system that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. In other words, design of algorithm that exactly detects R wave using minimal computation and classifies PVC is needed. So, R wave detection algorithm based adaptive threshold and window for the classification of PVC is presented in this paper. For this purpose, ECG signals are first processed by the usual preprocessing method and R wave was detected and adaptive window through R-R interval is used for efficiency of the detection. The performance of R wave detection and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate 99.33%, 88.86% accuracy respectively for R wave detection and PVC classification.

Optimal R Wave Detection and Advanced PVC Classification Method through Extracting Minimal Feature in IoT Environments (IoT 환경에서 최적 R파 검출 및 최소 특징점 추출을 통한 향상된 PVC 분류방법)

  • Cho, Iksung;Woo, Dongsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.91-98
    • /
    • 2017
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require higher computational cost and larger processing time. Therefore it is necessary to design efficient algorithm that classifies PVC(premature ventricular contraction) and decreases computational cost by accurately detecting minimal feature point based on only R peak through optimal R wave. We propose an optimal R wave detection and PVC classification method through extracting minimal feature point in IoT environment. For this purpose, we detected R wave through optimal threshold value and extracted RR interval and R peak pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through RR interval and R peak pattern. The performance of R wave detection and PVC classification is evaluated by using record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.758% in R wave detection and the rate of 93.94% in PVC classification.

R Wave Detection Considering Complexity and Arrhythmia Classification based on Binary Coding in Healthcare Environments (헬스케어 환경에서 복잡도를 고려한 R파 검출과 이진 부호화 기반의 부정맥 분류방법)

  • Cho, Iksung;Yoon, Jungoh
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.33-40
    • /
    • 2016
  • Previous works for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods require accurate detection of ECG signal, higher computational cost and larger processing time. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system based IOT that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose R wave detection considering complexity and arrhythmia classification based on binary coding. For this purpose, we detected R wave through SOM and then RR interval from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. R wave detection and PVC, PAC, Normal classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.41%, 97.18%, 94.14%, 99.83% in R wave, PVC, PAC, Normal.

Efficient R Wave Detection based on Subtractive Operation Method (차감 동작 기법 기반의 효율적인 R파 검출)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.945-952
    • /
    • 2013
  • The R wave of QRS complex is the most prominent feature in ECG because of its specific shape; therefore it is taken as a reference in ECG feature extraction. But R wave detection suffers from the fact that frequency bands of the noise/other components such as P/T waves overlap with that of QRS complex. ECG signal processing must consider efficiency for hardware and software resources available in processing for miniaturization and low power. In other words, the design of algorithm that exactly detects QRS region using minimal computation by analyzing the person's physical condition and/or environment is needed. Therefore, efficient QRS detection based on SOM(Subtractive Operation Method) is presented in this paper. For this purpose, we detected R wave through the preprocessing method using morphological filter, empirical threshold, and subtractive signal. Also, we applied dynamic backward searching method for efficient detection. The performance of R wave detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.41% in R wave detection.

A New Algorithm for P_wave Detection in the ECG signal (심전도 신호 P파 검출 알고리즘에 관한 연구)

  • Joang, Hee-Kyo;Kim, Kwang-Keun;Hwang, Sun-Chul;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.15-18
    • /
    • 1989
  • This paper presents a new algorithm for P-wave detection in the ECG signal. We detect the peak and valley point using significant point extraction algorithm with 9-point derivative. Because P-wave duration is changed according to heart-rates, we search for the R-peak and calculate the R-R interval time prior to the determination of P-wave duration threshold values in order to actively adapt to the change of P duration. We determine the parameters for P-wave detection and then P-peak, P-onset and P-offset are detected by these parameters. The results obtained from the proposed algorithm have detected successively P-wave almost more than 90%.

  • PDF

Optimal Threshold Setting Method for R Wave Detection According to The Sampling Frequency of ECG Signals (심전도신호 샘플링 주파수에 따른 R파 검출 최적 문턱치 설정)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1420-1428
    • /
    • 2017
  • It is difficult to guarantee the reliability of the algorithm due to the difference of the sampling frequency among the various ECG databases used for the R wave detection in case of applying to different environments. In this study, we propose an optimal threshold setting method for R wave detection according to the sampling frequency of ECG signals. For this purpose, preprocessing process was performed using moving average and the squaring function based the derivative. The optimal value for the peak threshold was then detected according to the sampling frequency by changing the threshold value according to the variation of the signal and the previously detected peak value. The performance of R wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. When the optimal values of the differential section, window size, and threshold coefficient for the MIT-BIH sampling frequency of 360 Hz were 7, 8, and 6.6, respectively, the R wave detection rate was 99.758%.

Premature Ventricular Contraction Classification through R Peak Pattern and RR Interval based on Optimal R Wave Detection (최적 R파 검출 기반의 R피크 패턴과 RR간격을 통한 조기심실수축 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require higher computational cost and larger processing time. Therefore it is necessary to design efficient algorithm that classifies PVC(premature ventricular contraction) and decreases computational cost by accurately detecting feature point based on only R peak through optimal R wave. For this purpose, we detected R wave through optimal threshold value and extracted RR interval and R peak pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through RR interval and R peak pattern. The performance of R wave detection and PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30. The achieved scores indicate the average of 99.02% in R wave detection and the rate of 94.85% in PVC classification.