• 제목/요약/키워드: R-gene mediated resistance

검색결과 38건 처리시간 0.031초

The development of herbicide-resistant maize: stable Agrobacterium-mediated transformation of maize using explants of type II embryogenic calli

  • Kim, Hyun A.;Utomo, Setyo Dwi;Kwon, Suk Yoon;Min, Sung Ran;Kim, Jin Seog;Yoo, Han Sang;Choi, Pil Son
    • Plant Biotechnology Reports
    • /
    • 제3권4호
    • /
    • pp.277-283
    • /
    • 2009
  • One of the limitations to conducting maize Agrobacterium-mediated transformation using explants of immature zygotic embryos routinely is the availability of the explants. To produce immature embryos routinely and continuously requires a well-equipped greenhouse and laborious artificial pollination. To overcome this limitation, an Agrobacterium-mediated transformation system using explants of type II embryogenic calli was developed. Once the type II embryogenic calli are produced, they can be subcultured and/or proliferated conveniently. The objectives of this study were to demonstrate a stable Agrobacterium-mediated transformation of maize using explants of type II embryonic calli and to evaluate the efficiency of the protocol in order to develop herbicide-resistant maize. The type II embryogenic calli were inoculated with Agrobacterium tumefaciens strain C58C1 carrying binary vector pTF102, and then were subsequently cultured on the following media: co-cultivation medium for 1 day, delay medium for 7 days, selection medium for $4{\times}14$ days, regeneration medium, and finally on germination medium. The T-DNA of the vector carried two cassettes (Ubi promoter-EPSPs ORF-nos and 35S promoter-bar ORF-nos). The EPSPs conferred resistance to glyphosate and bar conferred resistance to phosphinothricin. The confirmation of stable transformation and the efficiency of transformation was based on the resistance to phosphinothricin indicated by the growth of putative transgenic calli on selection medium amended with $4mg\;1^{-1}$ phosphinothricin, northern blot analysis of bar gene, and leaf painting assay for detection of bar gene-based herbicide resistance. Northern blot analysis and leaf painting assay confirmed the expression of bar transgenes in the $R_1$ generation. The average transformation efficiency was 0.60%. Based on northern blot analysis and leaf painting assay, line 31 was selected as an elite line of maize resistant to herbicide.

닭 도축장에서 분리한 nalidixic acid 내성 Salmonella 균의 gyrA 유전자 돌연변이 (Mutation in gyrA gene of nalidixic acid-resistant Salmonella isolates isolated from poultry slaughterhouse)

  • 조재근;손규희;김경희;김정미;박대현;이정우
    • 한국동물위생학회지
    • /
    • 제42권3호
    • /
    • pp.153-159
    • /
    • 2019
  • The objective of this study was to identify mutations in the quinolone resistance determining region (QRDR) of the gyrA, gyrB, parC and parE genes, and the presence of plasmid-mediated quinolone resistance (PMQR) genes: qnrA, qnrB, qnrS, aac(6')-lb-cr and qepA in 40 nalidixic acid- resistant ($NA^R$) Salmonella isolates isolated from poultry slaughterhouse. The MIC of NA and ciprofloxacin for 40 $NA^R$ Salmonella isolates was $128{\sim}512{\mu}g/mL$ and < $0.125{\sim}0.25{\mu}g/mL$, respectively. The Salmonella isolates were resistant to NA (100%), gentamicin (5.0%) and ampicillin (2.5%). All $NA^R$ Salmonella isolates represented point mutation in codons Aspartic acid(Asp)-87 (90%) and Serine(Ser)-83 (10%) of QRDR of gyrA gene: $Asp87{\rightarrow}glycine$, $Ser83{\rightarrow}tyrosine$. No mutations were observed in QRDR of the gyrB, parC and parE gene. Moreover PMQR genes was not found in any of the tested isolates. Our findings showed that DNA gyrase is the primary target of quinolone resistance and a single mutation in codon Asp87 and Ser83 of the gyrA gene can confer resistance to NA and reduced susceptibility ciprofloxacin in Salmonella isolates.

miR-340 Reverses Cisplatin Resistance of Hepatocellular Carcinoma Cell Lines by Targeting Nrf2-dependent Antioxidant Pathway

  • Shi, Liang;Chen, Zhan-Guo;Wu, Li-li;Zheng, Jian-Jian;Yang, Jian-Rong;Chen, Xiao-Fei;Chen, Zeng-Qiang;Liu, Cun-Li;Chi, Sheng-Ying;Zheng, Jia-Ying;Huang, Hai-Xia;Lin, Xiang-Yang;Zheng, Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10439-10444
    • /
    • 2015
  • Many chemotherapeutic agents have been successfully used to treat hepatocellular carcinoma (HCC); however, the development of chemoresistance in liver cancer cells usually results in a relapse and worsening of prognosis. It has been demonstrated that DNA methylation and histone modification play crucial roles in chemotherapy resistance. Currently, extensive research has shown that there is another potential mechanism of gene expression control, which is mediated through the function of short noncoding RNAs, especially for microRNAs (miRNAs), but little is known about their roles in cancer cell drug resistance. In present study, by taking advantage of miRNA effects on the resistance of human hepatocellular carcinoma cells line to cisplatin, it has been demonstrated that miR-340 were significantly downregulated whereas Nrf2 was upregulated in HepG2/CDDP (cisplatin) cells, compared with parental HepG2 cells. Bioinformatics analysis and luciferase assays of Nrf2-3'-untranslated region-based reporter constructor indicated that Nrf2 was the direct target gene of miR-340, miR-340 mimics suppressing Nrf2-dependent antioxidant pathway and enhancing the sensitivity of HepG2/CDDP cells to cisplatin. Interestingly, transfection with miR-340 mimics combined with miR-340 inhibitors reactivated the Nrf2 related pathway and restored the resistance of HepG2/CDDP cells to CDDP. Collectively, the results first suggested that lower expression of miR-340 is involved in the development of CDDP resistance in hepatocellular carcinoma cell line, at least partly due to regulating Nrf2-dependent antioxidant pathway.

Herbicide Resistant Cabbage (Brassica oleracea ssp. capitata) Plants by Agrobacterium-mediated Transformation

  • Lee, Yeon-Hee;Lee, Seung-Bum;Suh, Suk-Chul;Byun, Myung-Ok;Kim, Ho-Il
    • Journal of Plant Biotechnology
    • /
    • 제2권1호
    • /
    • pp.35-41
    • /
    • 2000
  • Transgenic cabbage (Brassica oleracea ssp. capitata) plants resistant to the commercial herbicide Bast $a^{R}$ were obtained by Agrobacterium tumefaciens - mediated transformation. Hypocotyl segments of in vitro grown plants were infected with Agrobacterium tumefaciens LBA 4404 harboring plasmid pMOG6-Bar which contains hpt and bar genes. Explants were cultured on callus induction medium (MS basal medium + 1 mg/L NAA + 2 mg/L BA + 2 mg/L AgN $O_3$+ 100 mg/L carbenicillin + 250 mg/L cefotaxime) supplemented with 15 mg/L hygromycin. Hygromycin resistant calluses were transferred to shoot regeneration medium (MS basal medium + 0.1 mg/L NAA + 2 mg/L BA + 3% sucrose + 2 mg/L AgN $O_3$+ 15 mg/L hygromycin + 250 mg/L cefotaxime + 100 mg/L carbenicillin). In order to induce roots, elongated shoots were placed on the MS medium without plant growth regulators and hygromycin. Southern blot analysis of several putative transgenic plants indicated that one to five intact copies of Apt and bar genes were incorporated into the genome. Expression of bar gene was confirmed by Northern blot analysis and by herbicide resistant phenotype. Seed progeny from self-pollinated transformants expressed the herbicide resistance and showed Mendelian segregation of the introduced gene.e.

  • PDF

Immunization of Mice with Recombinant Brucella abortus Organic Hydroperoxide Resistance (Ohr) Protein Protects Against a Virulent Brucella abortus 544 Infection

  • Hop, Huynh Tan;Reyes, Alisha Wehdnesday Bernardo;Simborio, Hannah Leah Tadeja;Arayan, Lauren Togonon;Min, Won Gi;Lee, Hu Jang;Lee, Jin Ju;Chang, Hong Hee;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.190-196
    • /
    • 2016
  • In this study, the Brucella abortus ohr gene coding for an organic hydroperoxide resistance protein (Ohr) was cloned into a maltose fusion protein expression system (pMAL), inserted into Escherichia coli, and purified, and its immunogenicity was evaluated by western blot analysis using Brucella-positive mouse sera. The purified recombinant Ohr (rOhr) was treated with adjuvant and injected intraperitoneally into BALB/c mice. A protective immune response analysis revealed that rOhr induced a significant increase in both the IgG1 and IgG2a titers, and IgG2a reached a higher level than IgG1 after the second and third immunizations. Additionally, immunization with rOhr induced high production of IFN-γ as well as proinflammatory cytokines such as TNF, MCP-1, IL-12p70, and IL-6, but a lesser amount of IL-10, suggesting that rOhr predominantly elicited a cell-mediated immune response. In addition, immunization with rOhr caused a significantly higher degree of protection against a virulent B. abortus infection compared with a positive control group consisting of mice immunized with maltose-binding protein. These findings showed that B. abortus rOhr was able to induce both humoral and cell-mediated immunity in mice, which suggested that this recombinant protein could be a potential vaccine candidate for animal brucellosis.

Single Crossover-Mediated Markerless Genome Engineering in Clostridium acetobutylicum

  • Lee, Sang-Hyun;Kim, Hyun Ju;Shin, Yong-An;Kim, Kyoung Heon;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.725-729
    • /
    • 2016
  • A novel genome-engineering tool in Clostridium acetobutylicum was developed based on single-crossover homologous recombination. A small-sized non-replicable plasmid, pHKO1, was designed for efficient integration into the C. acetobutylicum genome. The integrated pHKO1 plasmid backbone, which included an antibiotic resistance gene, can be excised in vivo by Flp recombinase, leaving a single flippase recognition target sequence in the middle of the targeted gene. Since the pSHL-FLP plasmid, the carrier of the Flp recombinase gene, employed the segregationally unstable pAMβ1 replicon, the plasmid was rapidly cured from the mutant C. acetobutylicum. Consequently, our method makes it easier to engineer C. acetobutylicum.

Characteristics of the Nisin-Resistant Transformants of Lactococcus lactis subsp. lactis LM0230

  • Kang, Hyeong-Joon;Kim, Jeong-Hwan;Chung, Dae-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권4호
    • /
    • pp.217-223
    • /
    • 1993
  • To investigate the nature and location of the nisin-resistance determinant of Lactococcus lactis subsp. lactis 7962 (L. lactis 7962), a total plasmid DNA prepared from L. lactis 7962, a nisin producer, was used to transform L. lactis subsp. lactis LM0230, a plasmid-free and nisin-sensitive strain, by protoplast mediated transformation procedures. All of the nisin-resistant transformants acquired the ability to utilize sucrose at the same time, confirming the close linkage between these two determinants in L. lactis 7962. The plasmid DNA profiles of a few selected nisin-resistant transformants were examined by agarose gel electrophoresis. No common plasmid was found among the transformants and some small plasmids previously not present in L. lactis 7962 were detected. These transformants were named as L. lactis KL1, KL2, KL3, KL4, or KL5, respectively based on their plasmid profiles. Growth curves of all transformants were similar to that of L. lactis LM0230, but different from that of L. lactis 7962. L. lactis KL5 showed the highest level of resistance to nisin, growing up to 1, 200 IU nisin/ml after 40 hr incubation. Some nisin-sensitive derivatives of KL1 or KL2 were obtained by plasmid curing experiments. The plasmid DNA profiles of the nisin-sensitive KL1 derivatives were apparently the same as that of the KL1. All of the nisin-sensitive KL2 derivatives were plasmid-free, but a nisin-resistant strain with no apparent plasmid was also obtained. These results indicate that the nisin-resistance of the $Nis^r$ transformants is presumably mediated by the chromosomally located gene(s) rather than plasmid-encoded gene(s).

  • PDF

Antifungal Gene (Rs-AFP) Introduction into Rehmannia glutinosa and Gene Expression Mediated by Agrobacterium tumefaciens

  • Lee, Youn-Su;Lim, Jung-Dae;Seong, Eun-Soo;Chae, Young-Am;Yu, Chang-Yeon
    • The Plant Pathology Journal
    • /
    • 제19권1호
    • /
    • pp.51-56
    • /
    • 2003
  • Rehmannia glutinosa is one of the most important medicinal crops in Korea. However, various plant pathogens, including Fusatium spp., cause great damage on R. glutinosa and result in enormous economic losses. This study was conducted to breed Fusarium-resistant plants by using Agrobacterium tumefaciences and AFP (anti-fungal protein) gene. The plant material used was a native accession of R. glutinosa. The PCR analysis was conducted to verify transgenicity. Based on the PCR analysis, nptII band was observed in transgenic plant genome. Southern blot and AFP protein analyses also showed the expression of this gene in transgenic plants. Expression of AFP in transgenic plants offers the possibility of developing resistance to fungal infection.

Transformation of Fuji Apple Plant Harboring the Coat Protein Gene of Cucumber mosaic virus

  • Lee, C.H.;Hyung, N.I.;Lee, G.P.;Choi, J.Y.;Kim, C.S.;Choi, S.H.;Jang, I.O.;Han, D.H.;Ryu, K.H.
    • The Plant Pathology Journal
    • /
    • 제19권3호
    • /
    • pp.162-165
    • /
    • 2003
  • Transformation of Fuji apple (Malus domestica 'Fuji') was performed using Agrobacterium tumefaciens harboring a coat protein (CP) gene of Cucumber mosaic virus (CMV). A plasmid DNA containing the virus CP and NPT II genes was introduced into the loaves of apple by th e Agrobacterium - mediated transformation procedure. Regenerated transformants of the apple were obtained by kanamycin resistance conferred by the introduced NPT II gene. PCR analysis showed that 3 out of 20 putatively selected R0 plant lines contain the CMV-CP gene. Nine putative transgenic lines out of 20 lines were investigated with the PCR analysis; 5 regenerants produced a 450 bp DNA band and 3 regenerants showed a 671 bp DNA band for the NPT II and CMV-CP genes, respectively. Southern hybyidization results demonstrate the successful integration of the CMV-CP gene into the genome of the apple. This is the first report on the generation of useful vius resistance source of transgenic apple for molecular breeding program.

Molecular Characterization and Prevalence of 16S Ribosomal RNA Methylase Producing Bacteria in Amikacin Resistant Gram-negative Bacilli Isolated from Clinical Specimens

  • Shin, Kyung-A;Hwang, Seock-Yeon;Hong, Seung-Bok
    • 대한의생명과학회지
    • /
    • 제18권3호
    • /
    • pp.299-306
    • /
    • 2012
  • Recently, the prevalence of 16S rRNA methylase conferring high-level resistance to aminoglycosides has been increasing in Gram-negative bacilli globally. We determined the prevalence and genotype of these methylase-producing bacteria, and characterized the co-resistance to ${\beta}$-lactam antibiotics and quinolone in Gram-negative clinical isolates collected in 2010 at a hospital in Korea. Among 65 amikacin-resistant isolates screened from 864 Gram-negative bacilli (GNB), 16S rRNA methylase genes were detected from 49 isolates, including Acinetobacter baumannii (43), Klebsiella pneumoniae (2), Proteus mirabilis (2) and Serratia marcescens (1), Empedobacter brevis (1). All of the 16S rRNA methylase genotype was armA and no variant sequences of amplified PCR products for armA were noted. The 16S rRNA methylase producing bacteria showed much higher resistance to aminoglycoside for Enterobacteriaceae and glucose non-fermenting (NF)-GNB and to imipenem for glucose NF-GNB, than the non-producing isolates. All of the 16S rRNA methylase producing Enterobacteriaceae had the extended-spectrum-${\beta}$-lactamase. In addition, two K. pneumoniae concurrently produced both plasmid-mediated AmpC ${\beta}$-lactamase and qnrB gene. All of the amikacin-resistant A. baumannii (43) co-harbored armA 16S rRNA methylase and $bla_{OXA-23}$ carbapenemase. In conclusion, 16S rRNA methylase producing bacteria were very prevalent among GNB in South Korea, and were commonly associated with co-resistance, including carbapenem and quinolone.