DOI QR코드

DOI QR Code

Antifungal Gene (Rs-AFP) Introduction into Rehmannia glutinosa and Gene Expression Mediated by Agrobacterium tumefaciens

  • Lee, Youn-Su (Division of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Lim, Jung-Dae (Division of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Seong, Eun-Soo (Division of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Chae, Young-Am (Department of Agronomy, College of Agriculture and Life Sciences, Seoul National University) ;
  • Yu, Chang-Yeon (Division of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University)
  • Published : 2003.02.01

Abstract

Rehmannia glutinosa is one of the most important medicinal crops in Korea. However, various plant pathogens, including Fusatium spp., cause great damage on R. glutinosa and result in enormous economic losses. This study was conducted to breed Fusarium-resistant plants by using Agrobacterium tumefaciences and AFP (anti-fungal protein) gene. The plant material used was a native accession of R. glutinosa. The PCR analysis was conducted to verify transgenicity. Based on the PCR analysis, nptII band was observed in transgenic plant genome. Southern blot and AFP protein analyses also showed the expression of this gene in transgenic plants. Expression of AFP in transgenic plants offers the possibility of developing resistance to fungal infection.

Keywords

References

  1. Barbier, M. and Dulieu, H. 1883. Early occurrence of genetic variants in protoplast cultures. Plant Sci. Lett. 29:201-206
  2. Choi,I. S., Park, J. S., Cho, J. T., Son, S. Y., Han, D. H., Chung, I. C. and Lee, J. I. 1995. Effect of diameter and length of root on yield in Rehmania glutinosa.. J. Korean Med. Crop Sci. 3(3): 173-180
  3. De Wit, P. J. G. M. 1992. Molecular characterization of gene-forgene systems in plant-fungus interactions and the application of avirulence genes in control of plant pahtogens. Annu. Rev. Phytopathol.30:391-418 https://doi.org/10.1146/annurev.py.30.090192.002135
  4. Franky, R. G. T., Kristel, E., Valentina, K, Natasha, V. R., Rupert, W.O., Anthea, K, Sarah, B. R., Sophie, T., Fred, V. L., Jozef, V., Bruno, P. A. C. and Willem, F. B. 1995. Small cystein-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573-588 https://doi.org/10.1105/tpc.7.5.573
  5. Franky, R. G. T., Hilde, M. E. 5., De Bolle Miguel, F. C, Fred, V. L., Sarah, B. R., Jozef, V., Bruno, P. A. C. and Willem, F. B. 1992. Analysis of two novel classes of plant antifungal protein from radish (Raphanus sativus L.) seeds. J. Biol. Chem. 267(22):15301-15309
  6. Kristel, E., Valentina, K, Natasha, V. R., Rupert, W.O., Anthea, K, Sarah, B. R., Sophie, T., Fred, V. L., Jozef, V., Bruno, P. A. C. and Willem, F. B. 1995. Small cystein-rich antifungal proteins from radish: their role in host defense. Plant Cell 7: 573-588 https://doi.org/10.1105/tpc.7.5.573
  7. Hasegawa, T., Koike, K, Takahashi S. and Ariyoshi, U. 1982. Constituents of leaves and roots of Kaikei Jio (Rehmannia glutinosa Libosch. formahueichingensis Hsiao). Shoyo Kugaku Zasshi 36:1-5
  8. Hejgaard, J., Jacobsen, S., Bjorn, S. E. and Mkragh, K M. 1992. Antifungal activity of chitin-binding PR-4 types proteins from barley grain and stressed leaf. FEBS Lett. 307:389-392 https://doi.org/10.1016/0014-5793(92)80720-2
  9. Jia, S. R., Yang, M. Z., Ott, R. and Chua, N. H. 1989. High frequency transformation of Kalanchoe lanciniata. Plant Cell Rep. 8:336-340 https://doi.org/10.1007/BF00716668
  10. Linthorst, H. J. M. 1991. Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci. 10:123-150 https://doi.org/10.1080/07352689109382309
  11. Mauch, F., Mauch-Mani, B. and Boller, T. 1988. Antifungal hydrolysis in pea tissue; inhibition of fungal growth by combinations of chitinase and $\beta$-I, 3-g1ucanase. Plant Physiol. 88: 136-942
  12. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  13. Murray, M. G. and Thompson, W. F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8:4321-4325 https://doi.org/10.1093/nar/8.19.4321
  14. Nidennan, T., Btuyere, T., Gugler, K. and Moslnger, E. 1993. Antifungal activity of native and recombinant tomato proteins. In: Mechanisms of Plant Defense Responses. 14 p
  15. Paul, C. S. and Robert, J. F. 1999. Processing of preproricin in transgenic tobacco. Protein Expression Purif. 15:188-195 https://doi.org/10.1006/prep.1998.0993
  16. Pawlick, M., Sangwan, R. S. and Sangwan-Norrcel, B. S. 1992. Factors influencing the Agrobacterium tumejeciens-mediated transformation of carrot (Dianthus carota L.). Plant Cell Rep. lO:477-480
  17. Singleton, L. L., Mihail, J. D. and Rush, C. M. 1992. Methods for research on soilborne phytopathogenic fungi. APS Press. 265p
  18. Socristan, M. D. and Melchers, G. 1987. Regeneration of plants from habituated and Agrobacterium transformed single-cell clones oftabacco. Mol. Gen. Genet. 152:111-127
  19. Terras, F. R. G., Eggermont, K., Kovaleva, V., Raikhel, N. V., Osborn, R. W., Kester, A., Rees, S. B., Torrekens, S., Van Leuven, F., Vanderleyden, J., Cammue, B. P. A. and Broekaert, W. F. 1995. Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:568-573
  20. Woloshuk, C. D., Meulenhiff, J. S., Seia-Buuriage, M., Van den Elzen, P. J. M. and Cornelissen, B. J. C. 1991. Pathogeninduced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3:629-628 https://doi.org/10.1105/tpc.3.6.629