• Title/Summary/Keyword: R-12

Search Result 10,165, Processing Time 0.034 seconds

The Effect of R-12 and R-134a Refrigerant on the Performance of Refrigeration Equipment for R-12 Refrigerant (R-12 냉매용 냉동장치의 성능에 미치는 R-12와 R-134a 냉매의 효과)

  • Lee, Hong-Gee;Jang, Dong-Ho;Jung, Yong-Jin;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.15-20
    • /
    • 2000
  • High pressure, pressure ratio, refrigerating effect, heat transfer from the condenser and the power of the compressor etc. of a self-made refrigeration equipment for R-12 are investigated when R-12 and R-134a are used as the coolants. The comparison between the performance for R-12 and that for R-134a is made. As a result, R-134a is better than R-12 in the view of high pressure, refrigerating effect and the coefficient of performance and vice versa in the view of pressure ratio, exit gas temperature from the compressor and heat transfer from the condenser.

  • PDF

Thermodynamic Properties of Alternatives for R12, R22 and Performances of Refrigerator (R12 및 R22대체냉매의 열역학적 물성치 및 냉동기의 성능비교)

  • Chang, S.D.;Shin, J.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.73-83
    • /
    • 1993
  • Thermodynamic properties of alternatives for R12 and R22 were estimated and performances of refrigerating cycle using these refrigerants were compared. In this study, we adopt R134a, R22/R142b, R22/R152a, R22/R152a/R124 as alternatives for R12 and R32/R134a for R22. Thermodynamic properties of these refrigerants were estimated using modified CSD equation of state. Cycle simulations of the refrigerating system considering heat source were carried out in order to compare the performance of the system. R134a shows relatively lower COP than R12 but very similar VCR. R22/R142b(50/50 mass fraction), R22/R152a(10/90), R22/R152a/R124(30/25/45) are good for the substitutes of R12 and R32/R134a(30/70) is appropriate for that of R22 in view of COP and VCR.

  • PDF

Production of 3-Hydroxypropionic Acid from Acrylic Acid by Newly Isolated Rhodococcus erythropolis LG12

  • Lee, Sang-Hyun;Park, Si-Jae;Park, Oh-Jin;Cho, Jun-Hyeong;Rhee, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.474-481
    • /
    • 2009
  • A novel microorganism, designated as LG12, was isolated from soil based on its ability to use acrylic acid as the sole carbon source. An electron microscopic analysis of its morphological characteristics and phylogenetic classification by 16S rRNA homology showed that the LG12 strain belongs to Rhodococcus erythropolis. R. erythropolis LG12 was able to metabolize a high concentration of acrylic acid (up to 40 g/l). In addition, R. erythropolis LG12 exhibited the highest acrylic acid-degrading activity among the tested microorganisms, including R. rhodochrous, R. equi, R. rubber, Candida rugosa, and Bacillus cereus. The effect of the culture conditions of R. erythropo/is LG12 on the production of 3-hydroxypropionic acid (3HP) from acrylic acid was also examined. To enhance the production of 3HP, acrylic acid-assimilating activity was induced by adding 1 mM acrylic acid to the culture medium when the cell density reached an $OD_{600}$ of 5. Further cultivation of R. erythropo/is LG 12 with 40 g/l of acrylic acid resulted in the production of 17.5 g/l of 3HP with a molar conversion yield of 44% and productivity of 0.22 g/l/h at $30^{\circ}C$ after 72 h.

Investigation of the Performance of the Alternative Refrigerant HFC-134a through Capillary tube : Numerical Analysis (대체냉매 HFC-134a의 모세관 성능에 관한 수치해석적 연구)

  • Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.169-178
    • /
    • 1993
  • Performance charts of capillary tubes for R-134a are presented. The calculation is based on the one-dimensional, adiabatic flow through capillary tube. The length of capillary tube changes with inlet pressure, mass flux, inlet quality(or subcooling), and inside diameter. The length for R-134a is shorter by 12.5~23% than that for R-12 as mass flux varies, by 13~18.5% as inlet pressure changes, by 15~15.2% as inside diameter changes, and by 3.6~20% as subcooling(or quality) changes. In general, the length for R-134a is shorter than that for R-12 by 10~20%. Pressure drop per unit length for R-134a is greater than that for R-12 since specific volume of R-134a is larger that of R-12 and vapor pressure of R-134a is greater than that of R-12. Flash point of R-134a is ahead of that of R-12.

  • PDF

Estimation of Thermodynamic Properties of Refrigerant Mixtures Using a Modified Carnaha-Starling Equation of State (수정된 Carnahan-Starling 상태방정식을 이용한 혼합냉매의 물성계산)

  • 김민수;김동섭;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2189-2205
    • /
    • 1991
  • Thermodynamic properties of binary nonazeotropic refrigerant mixtures are estimated by using a modified Carnhan-Starling equation of state. In this study, pure component refrigerants such as R14, R23, R13, R13 B1, R22, R12, R134a, R152a, R142b, RC318, R114, R11, R123 and R113 are chosen and the thermodynamic properties of enthalpy and entropy are calculated in terms of relevant variables. The modified Carnahan-Starling equation of state is compared with the carnahan-Staring-De Santis equation of sate. Results show that the relative errors become slightly smaller with the equation of state proposed in this study. Correlations are obtained for the mixtures of which the vapor liquid equilibruim data are available to us in the literature. Those mixtures are R14/R23, R23/R12, R13/R12, R13/R11, R13B1/R22, R13B1/RC318, R12/RC138, R12/R114 and R12/R11. The binary interaction coefficients are found under the condition of minimizing the pressure deviations at the vapor liquid equiblibrium state and the estimation of the vapor liquid equilibrium for the refrigerant mixtures is done. Pressure-enthalpy and temperature-entropy diagrams are plotted for the refrigerant mixtures of specific composition.

Growth and Yield Responses of Soybean to Overhead Flooding Duration at Four Growth Stages (관수시간에 따른 콩의 생육 및 수량반응)

  • 박경열;이종형;조영철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.92-97
    • /
    • 1995
  • The objective of this study is to investigate the growth characters of overhead flooded soybean plants at four growth stage. Overhead flooding treatments were applied at the vegetative growth stage ($V_3,\;V_6$) and the reproductive stage ($R_2,\;R_4$) for 6.12.24 hrs, respectively. Yield and yield components were more decreased as the overhead flooding duration was longer and the growth stage was later. Yield was not reduced significantly in soybean plants flooded at $V_3$ stage regardless of flooding duration, and flooded 6 or 12 hrs at $V_6$ stage. When compared to the control, 27 to 36% of yield reduction was observed in soybean plants flooded for 24 hrs at $V_6$ stage, 6 or 12 hrs at $R_2$ stage, and 6 hrs at $R_4$ stage. And 43%, 53% and 66% of yield were reduced through the flooding treatment for 24 hrs at $R_2$ stage 12 hrs and 24 hrs at $R_4$ stage, respectively. So yield reduction was higher in overhead flooded soybean plants at the reproductive stage than that at the vegetative growth stage.

  • PDF

Studies on the Estimation of Theromodynamic Properties for the Non-Azeotropic Refrigerant Mixtures (혼합냉매의 열역학적 물성치 추산에 관한 연구)

  • 김민수;김동섭;노승탁;김욱중;윤재호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1337-1348
    • /
    • 1990
  • Estimations of the thermodynamic properties are made for the selected binary non-azeotropic refrigerant mixtures including R13B1/R114, R22/R114, R12/R114, R152a/R114, R13B1/R152a and R13B1/R12 using the Peng-Robinson equation of state and mixing rules. In this study, we find that the binary interaction coefficients for the above mixtures have an effect upon the vapor-liquid equilibria and the thermodynamic properties. As the binary interaction coefficient becomes larger, the deviation from the idealized model, say, Raoult`s rule, is obvious. A correlation is proposed to relate the binary interaction coefficient to the difference between the dipole moments op each pure refrigerant. Vapor-liquid equilibrium are also accurately estimated using the binary interaction coefficient. Pressure-enthalpy and temperature-entropy relations are plotted for a certain composition ratio of each refrigerant mixture. Results show that the estimating method in this study can be applied to the investigation of the thermodynamic properties for the binary non-azeotropic refrigerant mixtures.

Calculation of the Thermodynamic Properties of R-134a and A Preliminary Study of the Refrigeration Performance (R-134a의 열역학적 물성치 계산과 냉동 성능에 관한 연구)

  • Park, Y.M.;Lee, H.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.286-296
    • /
    • 1991
  • The thermodynamic properties of R134a, the prospective R12 alternative, have been computerized using Martin-Hou equation of state and the coefficients given by Willson-Basu. Several experimental results in literatures for PVT data, saturated vapor pressure, saturated liquid density are compared with the calculated results to investigate the accuracy. The average deviation (max. deviation) is 0.13% (0.25%) for saturated liquid density, 0.25% (0.8%) for PVT data. Thermodynamic properties, enthalpy, entropy are compared with the NIST's. The maximum percent difference is 3% for saturated liquid enthalpy, 1.5% for saturated vapor enthalpy, 4% saturated liquid entropy, and 0.7% for saturated vapor entropy. Correction of W-B's coefficients and inclusion of the sixth term of M-H EOS for improvement of accuracy are recommended. R134a and R12 are compared with respect to refrigeration performance. COP's are different from each other within 3%. Refrigeration effect of R134a is superior to that of R12 but refrigeration capacity of R134a is inferior to that of R12 because the volumetric efficiency of the system using R134a is lower than that of the system using R12.

  • PDF

Development of Computer Program for Computation of 12 Refrigerant Properties (12가지 냉매 (R11, R12, R13, R14, R21, R22, R23, R113, R114, R500, R502, C318)의 상태치계산 프로그램)

  • Lee Ki Bang;Chung M. K.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.5
    • /
    • pp.477-483
    • /
    • 1987
  • A FORTRAN code has been developed to calculate thermodynamic properties of 12 kinds of refrigerants. Input variables are temperature and pressure or temperature only depending on the saturation. The program output properties are specific volume, saturation pressure, enthalpy, entropy, specific heats and speed of sound. Sample calculations show that output properties are in very good agreements with thermodynamic tables and charts.

  • PDF

Effects of $(1R,9S)-{\beta}-Hydrastine$ hydrochloride on L-DOPA-Induced Cytotoxicity in PC12 cells

  • Yin, Shou-Yu;Lee, Jae-Joon;Kim, Yu-Mi;Jin, Chun-Mei;Yang, Yoo-Jung;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • v.10 no.3
    • /
    • pp.124-128
    • /
    • 2004
  • Previously, $(1R,9S)-{\beta}-Hydrastine$ hydrochloride has been found to lower dopamine content in PC12 cells (Kim et al., 20001). In this study, the effects of $(1R,9S)-{\beta}-Hydrastine$ hydrochloride on L-DOPA-induced cytotoxicity in PC12 cells were investigated. Treatment with $(1R,9S)-{\beta}-Hydrastine$ hydrochloride at concentrations higher than $500\;{\mu}M$ caused cytotoxicity in PC12 cells. In addition, $(1R,9S)-{\beta}-Hydrastine$ hydrochloride at non-cytotoxic or cytotoxic concentrations significantly enhanced L-DOPA-induced cytotoxicity (L-DOPA concentration, $50\;{\mu}M$). Treatment of PC12 cells with $750\;{\mu}M$ $-1R,9S)-{\beta}-Hydrastine$ hydrochloride and $50\;{\mu}M$ L-DOPA, alone or in combination, also induced cell death via a mechanism which exhibited morphological and biochemical characteristics of apoptosis, including chromatin condensation and membrane blebbing. Exposure of PC12 cells to $(1R,9S)-{\beta}-Hydrastine$ hydrochloride, L-DOPA and $(1R,9S)-{\beta}-Hydrastine$ hydrochloride plus L-DOPA for 48 h resulted in a marked increase in the cell loss and percentage of apoptotic cells compared with exposure for 24 h. These data indicate that $(1R,9S)-{\beta}-Hydrastine$hydrochloride at higher concentration ranges aggravates L-DOPA-induced neurotoxicity cytotoxicity in PC12 cells. Therefore, it is proposed that the long-term L-DOPA therapeutic patients with $(1R,9S)-{\beta}-Hydrastine$ hydrochloride could be checked for the adverse symptoms.