Browse > Article
http://dx.doi.org/10.4014/jmb.0808.473

Production of 3-Hydroxypropionic Acid from Acrylic Acid by Newly Isolated Rhodococcus erythropolis LG12  

Lee, Sang-Hyun (Corporate R&D, LG Chem Research Park)
Park, Si-Jae (Corporate R&D, LG Chem Research Park)
Park, Oh-Jin (Corporate R&D, LG Chem Research Park)
Cho, Jun-Hyeong (Corporate R&D, LG Chem Research Park)
Rhee, Joo-Won (Corporate R&D, LG Chem Research Park)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.5, 2009 , pp. 474-481 More about this Journal
Abstract
A novel microorganism, designated as LG12, was isolated from soil based on its ability to use acrylic acid as the sole carbon source. An electron microscopic analysis of its morphological characteristics and phylogenetic classification by 16S rRNA homology showed that the LG12 strain belongs to Rhodococcus erythropolis. R. erythropolis LG12 was able to metabolize a high concentration of acrylic acid (up to 40 g/l). In addition, R. erythropolis LG12 exhibited the highest acrylic acid-degrading activity among the tested microorganisms, including R. rhodochrous, R. equi, R. rubber, Candida rugosa, and Bacillus cereus. The effect of the culture conditions of R. erythropo/is LG12 on the production of 3-hydroxypropionic acid (3HP) from acrylic acid was also examined. To enhance the production of 3HP, acrylic acid-assimilating activity was induced by adding 1 mM acrylic acid to the culture medium when the cell density reached an $OD_{600}$ of 5. Further cultivation of R. erythropo/is LG 12 with 40 g/l of acrylic acid resulted in the production of 17.5 g/l of 3HP with a molar conversion yield of 44% and productivity of 0.22 g/l/h at $30^{\circ}C$ after 72 h.
Keywords
3-Hydroxypropionic acid; acrylic acid; Rhodococcus erythropolis LG12; resting cell reaction;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410   DOI   PUBMED   ScienceOn
2 Bottazzi, V., B. Battistotti, and F. Bianchi. 1983. Microcolonies formation of thermophilic lactic acid bacteria in grana cheese. Microbiol. Aliments Nutr. 1: 285-291
3 Bringmann, G. and R. Kuhn. 1980. Comparison at the toxicity thresholds of water pollutants to bacteria, algae, and protozoa in the cell multiplication inhibition test. Wat. Res. 14: 231-241   DOI   ScienceOn
4 Brown, S. F. 2003. Bioplastic fantastic. Fortune 148: 92-97   PUBMED   ScienceOn
5 Matsuyama, H., I. Yumoto, T. Kuto, and O. Shida. 2003. Rhodococcus tukisamunsis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 53: 1333-1337   DOI   ScienceOn
6 Shanker, R., C. Ramakrishna, and R. K. Seth. 1990. Microbial degradation of acrylamide monomer. Arch. Microbiol. 154:192-198   DOI   ScienceOn
7 Thijsse, G. J. E. 1964. Fatty acid accumulation by acrylate inhibition of b-oxidation in an alkane-oxidizing Pseudomonas. Biochim. Biophys. Acta 84: 195-197   PUBMED   ScienceOn
8 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680   DOI   ScienceOn
9 Akedo, M., C. L. Cooney, and A. J. Sinskey. 1983. Direct demonstration of lactate-acrylate interconversion in Clostridium propionicum. Biotechnology 1: 791-794   DOI
10 Hasegawa, J., M. Ogura, H. Kanema, H. Kawaharada, and K. Watanabe. 1982. Production of b-hydroxypropionic acid from propionic acid by a Candida rugosa mutant unable to assimilate propionic acid. J. Ferment. Technol. 60: 591-594
11 Yamada, H., T. Nagasawa, and T. Nakamura. 2001. Process for biological production of organic acids. U.S. Patent No. 5135858
12 Cheng, Q., S. M. Thomas, K. Kostichka, J. R. Valentine, and V. Nagarajan. 2000. Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 by in vitro transposition. J. Bacteriol. 182: 4744-4751   DOI   ScienceOn
13 Ansede, J. H., R. J. Pellechia, and D. C. Yoch. 1999. Metabolism of acrylate to b-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A. Appl. Environ. Microbiol. 65: 5075-5081   PUBMED   ScienceOn
14 Siebruth, J. M. 1961. Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals. J. Bacteriol. 82: 27-29
15 Read, R. R. 2002. b-Hydroxypropionic acid. Org. Synth. 1: 321
16 Andreoni, V., S. Bernasconi, C. Sorlini, and M. Villa. 1990. Microbial degradation of acrylic acid. Ann. Microbiol. 40: 279-286
17 Dalal, R. K., M. Akedo, C. L. Cooney, and A. J. Sinskey. 1980. A microbial route for acrylic acid production. Biosource Dig. 2: 89-97
18 Takamizawa, K., H. Horitsu, T. Ichikawa, K. Kawai, and T. Suzuki. 1993. b-Hydroxypropionic acid production by Byssochlamys sp. grown on acrylic acid. Appl. Microbiol. Biotech. 40: 196-200   DOI   ScienceOn
19 Black, K. A., L. Finch, and C. B. Frederick. 1993. Metabolism of acrylic acid to carbon dioxide in mouse tissues. Fundam. Appl. Toxicol. 21: 97-104   DOI   ScienceOn
20 Alber, B. E. and G. Fuchs. 2002. Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Biol. Chem. 277: 12137-12143   DOI   ScienceOn
21 Suthers, P. F. and D. C. Cameron. 2001. Production of 3-hydroxypropionic acid in recombinant organisms. WO Patent No. 01-16346