• Title/Summary/Keyword: R-(-)-ibuprofen

Search Result 23, Processing Time 0.032 seconds

Preparative Method of R-(-)-Ibuprofen by Diastereomer Crystallization

  • Trung, Tran Quoe;Kim, Jong-Moon;Kim, Kyeong-Ho
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.108-111
    • /
    • 2006
  • The economic and effective method for preparation of R-(-)-ibuprofen by diastereomer crystallization was developed. R-(-)-ibuprofen was resolved from racemic ibuprofen by forming R-(-)ibuprofen-R-(+)-$\alpha$-methylbenzylamine diastereomeric salt with R-(+)-$\alpha$-methylbenzylamine and crystallization. The purity of R-(-)-ibuprofen-R-(+)-$\alpha$-methylbenzylamine diastereomeric salt was tested and confirmed using HPLC and $^1H-NMR$ method. The pure diastereomeric salt collected from repeated recrystallization was further fractionated by liquid-liquid extraction to the pure enantiomer without racemization. R-(-)-ibuprofen was recovered producing overall yield of 2.4% with the purity more than 99.97%.

Optical Purity Determination of (S)-Ibuprofen in Tablets by Achiral Gas Chromatography

  • Paik, Man-Jeong;Kim, Kyoung-Rae
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.820-824
    • /
    • 2004
  • An optical purity test was indirectly performed on (S)-ibuprofen as its diastereomeric (R)-(+)-1-phenylethylamide derivative using achiral gas chromatography (GC). The method for the determination of trace (R)-ibuprofen (optical impurity), within the range 1.0 to 50 ng, from a racemic ibuprofen standard was linear (r=0.9997) with acceptable precision (% $RSD{\leq}5.3$) and accuracy (% RE=0.7~-3.9). Similar results were obtained with the method validation for the quantification of (S)-ibuprofen within the range 0.1 to 2.0 $\mu\textrm{g}$ using a (S)-ibuprofen stan-dard. When applied to seven different commercial (S)-ibuprofen products, their optical purities (98.7~99.1%) were determined with good precision (% $RSD{\leq}4.0$).

Solubilization of Ibuprofen in Aqueous Solution (이부프로펜의 가용화)

  • Lee, Jang-Won;Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.279-286
    • /
    • 1997
  • In order to formulate 2% ibuprofen solution, the effects of various solublizing agents, such as cosolvents (propylene glycol, polyethylene glycol, glycerin), a complexing agent $(CELDEX{\circledR}\;CH20)$, surfactants $(Poloxamers\;and\;Cremophor{\circledR}\;RH40)$ on the solubility of ibuprofen in aqueous solution were evaluated. Among them, Poloxamer 407 and $Cremophor{\circledR}$ RH40 showed the excellent capacity on the solubilization of ibuprofen. After 2% ibuprofen solution of choice were administered orally to rats, in reference to a 2% ibuprofen syrup in the market, the pharmacokinetic parameters were determined. The absorption rate of ibuprofen from the solution was higher than that from the suspension.

  • PDF

Effect of Temperature and Eluent Composition on the Separation of Ketoprofen and Ibuprofen Racemates in Kromasil HPLC Column (Kromasil HPLC 칼럼에서 온도와 이동상 조성비에 따른 Ketoprofen과 Ibuprofen 라세미체의 분리특성)

  • Park, Moon-Bae;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.54-58
    • /
    • 2009
  • Ketoprofen and ibuprofen are non-steroid anti-inflammatory drug(NSAID) that have analgesic and antipyretic properties. (S)-ketoprofen and (S)-ibuprofen have pharmacological activity, while (R)-ketoprofen and (R)-ibuprofen are either inactive or have side effect. The chiral separation of racemic ketoprofen and ibuprofen enantiomers was carried out by using a Kromasil HPLC column. Some chromatographic parameters (selectivity, resolution, number of theoretical plates and ${\Delta}H$) are calculated under different mobile phase compositions of hexane/t-BME/acetic acid and temperatures. The selectivity, resolution and number of theoretical plates were observed high at $25^{\circ}C$ and the composition of hexane/t-BME/acetic acid (80/20/0.1).

Determination of Enantiomeric Purity of (S)-(+)-Ibuprofen by $^1$H-NMR using (-)- Cinchonidine as a Chiral Solvating Agent

  • Lee, Jae-Yong;Seo, Sang-Hun;Kang, Jong-Seong;Kim, Kyeong-Ho
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.219.1-219.1
    • /
    • 2003
  • $^1$H-NMR method for the determination of enantiomeric purity of (S)-(+)-ibuprofen was developed using (-)-cinchonidine as a chiral solvating agent. (S)-(+)-ibuprofen was prepared by optical resolution of racemic ibuprofen using preferential recrystallization method with (S)-(-)-${\alpha}$-methylbenzylamine and (R)-(-)-ibuprofen by semi-preparative chiral HPLC using chiral OD column and n-hexane/2-propanol/trifluoroacetic acid as a mobile phase. Several concentrations of synthetic mixture of (S)-(+)-ibuprofen and (R)-(-)-ibuprofen were added to the (-)-cinchonidine disolved in CDCl$_3$. (omitted)

  • PDF

Separation Characteristics of Ibuprofen in Kromasil HPLC Column (Kromasil HPLC 칼럼을 이용한 Ibuprofen의 분리특성 연구)

  • Park Joon Sub;Kim Byung Lip;Yoon Tae Ho;Kim In Ho
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.244-249
    • /
    • 2005
  • Chiral separation of racemic ibuprofen was achieved on a Kromasil KR100-5CHI-TBB column. Some chromatographic parameters (resolution, number of theoretical plates, HETP, capacity factor) are calculated under different separation conditions such as change of mobile phase compositions (hexane / t-BME : 85 / 15, 75 / 15, 65 / 35, 55 /45) as well as acetic acid concentrations for adjusting pH (0.1 to 1 $v/v\%$). Flow rate versus number of theoretical plates and HETP were compared to evaluate column efficiency. To determine the adsorption isotherms, PIM (Pulsed Input Method) was carried out. At concentrations of racemic ibuprofen between 0.1 and 0.3 mg/ml, S- and R-ibuprofen have the same retention time of 4.48 and 5.81 min. Ibuprofen isotherms show a linear form under concentrations of 0.3 mg/ml with eluent (hexane / t-BME = 55 / 45).

Experimental and FEMLAB Simulation Study of Ibuprofen Racemate Separation in HPLC (Ibuprofen Racemate의 HPLC 분리실험과 FEMLAB 전산모사 연구)

  • Lee, Eun;Chang, Sang-Mork;Kim, Jong-Min;Kim, Woo-Shick;Kim, In-Ho
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.224-229
    • /
    • 2006
  • FEMLAB is a powerful interactive environment for modeling, solving all kinds of scientific and engineering problems based on partial differential equations(PDEs). Separation process of chiral compound in HPLC columns was simulated by FEMLAB. To study change of elution profile with isotherm models, non-competitive and competitive Langmuir adsorption isotherm were adopted. Separated material was (R, S)-ibuprofen [(R, S)-2-(4-isobutyl phenyl) propionic acid], an anti-inflammatory agent, which retain the pharmacological activity in the (S)-(+)-enantiomer. Sample concentrations were changed from 0.5 mg/ml to 2.0 mg/ml at a flow rate of 1 ml/min and flow rate varied from 1 ml/min to 3 ml/min at an ibuprofen concentration of 2.0 mg/ml and $20{\mu}l$ of injection volume. Simulated results were well fitted with experimental data.

Synthesis of Molecularly Imprinted Polymers for Chiral (S)-Ibuprofen and Their Molecular Recognition Mechanism (키랄(S)-이부푸로펜 함유 고분자의 합성과 제조된 고분자의 분자 인식 메카니즘)

  • Huangfu, Fengyun;Wang, Bing;Sun, Yan
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.288-293
    • /
    • 2013
  • A group of molecularly imprinted polymers (MIPs) with specific recognition for chiral (S)-ibuprofen were successfully prepared based on hydrogen bonds, utilizing ${\alpha}$-methacrylic acid as a functional monomer. The IR analysis of MIPs showed that the blue- and red-shifted hydrogen bonds were formed between templates and functional monomers in the process of self-assembly imprinting and re-recognition, respectively. According to UV-Vis analysis, we found that the ratio of host-guest complexes between template molecule and functional monomer was 1:1. The effect of cross-linker's quantity on the polymerization was studied by transmission electron microscope (TEM). The adsorption selectivity experiments indicated that MIPs exhibited higher selectivity to (S)-ibuprofen than those to ketoprofen and (R)-ibuprofen, (S)-ibuprofen's structural analogs.

Correlation Equation for Retention Factor and Resolution of Ibuprofen in SFC

  • Han, Soon-Koo;Jin, Yin-Zhe;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1807-1811
    • /
    • 2004
  • Supercritical fluid chromatography (SFC) was considered for separating racemic ibuprofen. The chromatographic column (3.9 ${\times}$ 150 mm) was packed with Kromasil$^{\circledR}$ CHI-TBB, and the mobile phase was supercritical carbon dioxide with modifier of IPA. The experimental variables were the content of IPA, and temperature and pressure of supercritical mobile phase. To determine the separation condition, the empirical equation of retention factor and resolution was proposed. In the case of retention factor, the empirical equation was in the form, $k\;=\;a{\rho}\;+b/F\;+\;c\;({\rho}/F)\;+\;d$. The empirical equation for resolution was proposed as a linear form, $R\;=\;a{\rho}\;+\;bF\;+\;c$.

$^1$H-NMR Studies of Chiral Solvating Agent Induced - Chemical Shift Differences of Ibuprofen Enantiomers

  • Lee, Jae-Yong;Seo, Sang-Hun;Hong, Seon-Pyo;Kim, Kyeong-Ho
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.223.3-224
    • /
    • 2003
  • Chiral discrimination of ibuprofen by $^1$H-NMR using several chiral solvating agents such as (-)-brucine, (-)-cinchonidine, (1R, 2S)-(-)-ephedrine, (S)-(-)-${\alpha}$- methylbenzylamine, (-)-strychnine and L-(-)-tryptophane was investigated. Racemic ibuprofen treated with one equivalent of chiral solvating agent was preferentially crystallized. Chiral purity of each precipitates was measured by chiral HPLC and chemical shift differences(ΔΔ$\delta$) was calculated. Eventhough (S)-(-)-${\alpha}$-methylbenzylamine was most effective for the preferential recrystalization of (S)-(+)-ibuprofen, chemical shift differentiation ability was weak. (omitted)

  • PDF