Browse > Article

Optical Purity Determination of (S)-Ibuprofen in Tablets by Achiral Gas Chromatography  

Paik, Man-Jeong (College of Pharmacy, Sungkyunkwan University)
Kim, Kyoung-Rae (College of Pharmacy, Sungkyunkwan University)
Publication Information
Archives of Pharmacal Research / v.27, no.8, 2004 , pp. 820-824 More about this Journal
Abstract
An optical purity test was indirectly performed on (S)-ibuprofen as its diastereomeric (R)-(+)-1-phenylethylamide derivative using achiral gas chromatography (GC). The method for the determination of trace (R)-ibuprofen (optical impurity), within the range 1.0 to 50 ng, from a racemic ibuprofen standard was linear (r=0.9997) with acceptable precision (% $RSD{\leq}5.3$) and accuracy (% RE=0.7~-3.9). Similar results were obtained with the method validation for the quantification of (S)-ibuprofen within the range 0.1 to 2.0 $\mu\textrm{g}$ using a (S)-ibuprofen stan-dard. When applied to seven different commercial (S)-ibuprofen products, their optical purities (98.7~99.1%) were determined with good precision (% $RSD{\leq}4.0$).
Keywords
Enantioseparation; Ibuprofen, Optical purity; (R)-(+)-1-Phenylethylamime; Achiral gas chromatography; Chiral separation;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Bhunshan, R. and Martens, J., Resolution of enantiomers of ibuprofen by liquid chromatography. Biomed. Chromatogr., 12,309-316 (1998)
2 Pehourcq, F., Lagrange, F., Labat, L., and Bannwarth, B., Simultaneous measurement of flurbiprofen, ibuprofen and ketoprofen enantiomer concentrations in plasma using L-leucinamide as the chiral coupling component. J. Liq. Chromatogr., 18, 3969-3979 (1995)   DOI
3 Thomason, M. J., Hung, Y. -F., Rjys-Williams, W., Hanlon, G. W., and Lloyd, A.W., Indirect enantiomeric separation of 2-arylpropionic acids and structurally related compounds by reversed phase HPLC. J. Pharm. Biomed. Anal., 15, 1765-1774 (1997)   DOI   ScienceOn
4 Lombardino, J. G., In Lombardino, J. G. (Ed.). Non-steroidal anti-inflammatory drugs. vol. 5, Wiley, New York, pp. 303-345, (1985)
5 Blessington, B., Crabb, N., Karkee, S., and Northage, A., Chromatographic approaches to the quality control of chiral propionate anti-inflammatory drugs and herbicides. J. Chromatogr. A, 469, 183-190 (1989)   DOI   ScienceOn
6 Santa, T., Luo, J. Lim, C.-K., and Imai, K., Enantiomeric separa-tion and detection by high-performance liquid chromatography-mass spectrometry of 2-arylpropionic acids derivatized with benzofurazan fluorescent reagents. Biomed. Chromatogr., 12, 73-77 (1998)   DOI   ScienceOn
7 Yasaka, Y., Ono, Y., and Tanaka, M., (S)-(+)-1-Methyl-2-(6,7,dimethoxy-2,3-naphthalimido)ethyltrifluoromethanesulfonate as a fluorescence chiral derivatizing reagent for carboxylic acid enantiomers in high-performance liquid chromatography. J. Chromatogr. A, 810, 221-225 (1998)   PUBMED
8 Blanco, M., Coello, J., Iturriaga, H., Maspoch, S., and Perez-Maseda, C., Separation of profen enantiomers by capillary electrophoresis using cyclodextrins as chiral selectors. J. Chromatogr. A, 793, 165-175 (1998)   DOI   PUBMED   ScienceOn
9 Paik, M. J., Lee, Y. S., Goto, J., and Kim, K. R., Chiral discrimination of multiple profens as diastereomeric (R)-(+)-1-phenylethylamides by achiral dual-column gas chromato-graphy. J. Chromatogr. B, 803, 257-265 (2004)   DOI   ScienceOn
10 Jamali, F. and Wainer, I. W. (Eds.). Drug Stereochemistry. Marcel Dekker Inc., New York, pp. 375-384, (1993)
11 La, S., Kim, J., Kim, J. H., Goto, J., and Kim, K. R., Simultaneous chiral discrimination of multiple profens by cyclodextrin-modified capillary electrophoresis in normal and reversed polarity modes. Electrophoresis, 24, 2642-2649 (2003)   DOI   ScienceOn
12 Abushoffa, A. M., Fillet, M., Hubert, P., and Crommen, J., Prediction of selectivity for enantiomeric separations of uncharged compounds by capillary electrophoresis involving dual-cyclodextrin systems. J. Chromatogr. A, 948, 321-329 (2002)   DOI   PUBMED   ScienceOn
13 Baillie, T. A., Adams, W. J., Kaiser, D. G., Olanoff, L. S., Halstead, G. W., Harpootlian, H., and Van Giessen, G. J., Mechanistic studies of the metabolic chiral inversion of (R)-ibuprofen in humans. J. Pharmacol. Exp. Ther., 249, 517-523 (1989)
14 Wright, R. M. and Jamali, F., Limited extent of stereochemical conversion of chiral non-steroidal anti-inflammatory drugs induced by derivatization methods employing ethyl chloro-formate. J. Chromatogr., 616, 59-65 (1993)   DOI   PUBMED   ScienceOn
15 Bjornsdottir, I., Kepp, D. R., Tjornelund, J., and Hansen, S. H., Separation of the enantiomers of ibuprofen and its major phase I metabolites in urine using capillary electrophoresis. Electrophoresis, 19, 455-460 (1998)   DOI   ScienceOn
16 Carlson, A. and Gyllenhaal, O., Separation of carboxylic acids enantiomers by gas chromatography after rapid derivatization with (R)- or (S)-1-phenylethylamine after activation by ethyl chloroformate. J. Chromatogr. A, 508, 333-339 (1990)   DOI   ScienceOn
17 Jabor, V. A. P., Lanchote, V. L., and Bonato, P. S., Enantiose-lective analysis of ibuprofen in human plasma by anionic cyclodextrin-modified electrokinetic chromatography. Electro-phoresis, 23, 3041-3047 (2002)   DOI   ScienceOn
18 Davies, N. M., Method of analysis of chiral-non-steroidal anti-inflammatory drugs. J. Chromatogr. B, 691, 229-261 (1997)   DOI   ScienceOn
19 Tracy, T. S. and Hall, S., Metabolic inversion of (R)-ibuprofen. Epimerization and hydrolysis of ibuprofenyl-coenzyme A. Drug Metabol. Dispos., 20, 322-327 (1992)
20 Rudy, A. C., Anliker, K. S., and Hall, S. D., High-performance liquid chromatographic determination of the stereoisomeric metabolites of ibuprofen. J. Chromatogr. B, 528, 395-405 (1990)   DOI   ScienceOn