• Title/Summary/Keyword: R peptide

Search Result 345, Processing Time 0.026 seconds

Peroxisome proliferator-activated receptor γ is essential for secretion of ANP induced by prostaglandin D2 in the beating rat atrium

  • Zhang, Ying;Li, Xiang;Liu, Li-Ping;Hong, Lan;Liu, Xia;Zhang, Bo;Wu, Cheng-Zhe;Cui, Xun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.293-300
    • /
    • 2017
  • Prostaglandin $D_2$ ($PGD_2$) may act against myocardial ischemia-reperfusion (I/R) injury and play an anti-inflammatory role in the heart. Although the effect of $PGD_2$ in regulation of ANP secretion of the atrium was reported, the mechanisms involved are not clearly identified. The aim of the present study was to investigate whether $PGD_2$ can regulate ANP secretion in the isolated perfused beating rat atrium, and its underlying mechanisms. $PGD_2$ (0.1 to $10{\mu}M$) significantly increased atrial ANP secretion concomitantly with positive inotropy in a dose-dependent manner. Effects of $PGD_2$ on atrial ANP secretion and mechanical dynamics were abolished by AH-6809 ($1.0{\mu}M$) and AL-8810 ($1.0{\mu}M$), $PGD_2$ and prostaglandin $F2{\alpha}$ ($PGF2{\alpha}$) receptor antagonists, respectively. Moreover, $PGD_2$ clearly upregulated atrial peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and the $PGD_2$ metabolite 15-deoxy-${\Delta}12$, 14-$PGJ_2$ (15d-$PGJ_2$, $0.1{\mu}M$) dramatically increased atrial ANP secretion. Increased ANP secretions induced by $PGD_2$ and 15d-$PGJ_2$ were completely blocked by the $PPAR{\gamma}$ antagonist GW9662 ($0.1{\mu}M$). PD98059 ($10.0{\mu}M$) and LY294002 ($1.0{\mu}M$), antagonists of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling, respectively, significantly attenuated the increase of atrial ANP secretion by $PGD_2$. These results indicated that $PGD_2$ stimulated atrial ANP secretion and promoted positive inotropy by activating $PPAR{\gamma}$ in beating rat atria. MAPK/ERK and PI3K/Akt signaling pathways were each partially involved in regulating $PGD_2$-induced atrial ANP secretion.

Bovine Growth Hormone and Milk Fat Synthesis: from the Body to the Molecule - Review -

  • Kim, W.Y.;Ha, J.K.;Han, In K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.335-356
    • /
    • 1997
  • Injection of bovine growth hormone (bGH) to lactating dairy cows increases milk yield and yields of milk components including fat. It is generally believed that most of the anabolic effects derived from bGH in animal tissues are primarily mediated by IGF-1. IGF-1 is a strong anabolic peptide in the plasma of animals and exerts mitogenic and metabolic effects on target cells. Contrary to most protein hormones, the majority of IGF-1 in circulation is bound to the binding proteins (IGFBPs) which are known to be responsible for modifying the biological actions of IGF-1, thus making determinations of IGF-1 actions more difficult. On the other hand, fat is a major milk component and the greatest energy source in milk. Currently, the fat content of milk is one of the major criteria used in determining milk prices. It has been known that flavor and texture of dairy products are mainly affected by milk fat and its composition. Acetyl-CoA carboxylase (ACC) is the rate limiting enzyme which catalyzes the conversion of acetyl-CoA to malonyl-CoA for fatty acid synthesis in 1ipogenic tissues of animals including bovine lactating mammary glands. In addition to the short-tenn hormonal regulation of ACC by changes in the catalytic efficiency per enzyme molecule brought about by phosphorylation and dephosphorylation of the enzyme, the long-term hormonal regulation of ACC by changes in the number of enzyme molecules plays an essential role in control of ACC and lipogenesis. Insulin, at supraphysiological concentrations, binds to IGF-1 receptors, thereby mimicking the biological effects of IGF-1. The receptors for insulin and IGF-1 share structural and functional homology. Furthermore, epidermal growth factor increased ACC activity in rat hepatocytes and adipocytes. Therefore, it can be assumed that IGF-1 mediating bGH action may increase milk fat production by stimulation ACC with phosphorylation (short term) and/or increasing amounts of the enzyme proteins (long term). Consequently, the main purpose of this paper is to give the readers not only the galactopoietic effects of bGH, but also the insight of bGH action with regard to stimulating milk fat synthesis from the whole body to the molecular levels.

Gene Transfer Optimization via E. coli-driven Conjugation in Nocardiopsis Strain Isolated via Genome Screening (유전체 스크리닝으로 선별된 Nocardiopsis 균주의 대장균 접합을 통한 유전자 도입전략 최적화)

  • Jeon, Ho-Geun;Lee, Mi-Jin;Kim, Hyun-Bum;Han, Kyu-Boem;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.104-110
    • /
    • 2011
  • Actinomycetes, Gram positive soil bacteria, are valuable microorganisms which produce useful secondary metabolites including antibiotics, antiparasitic substances, anti-cancer drugs, and immunosuppressants. Although a major family of actinomycetes, known as streptomycetes, has been intensively investigated at the molecular level for several decades, a potentially valuable and only recently isolated non-streptomycetes rare actinomycetes (NSRA) family has been poorly characterized due to lack of proper genetic manipulation systems. Here we report that a PCR-based genome screening strategy was performed with approximately 180 independently isolated actinomycetes strains to isolate potentially valuable NSRA strains. Thanks to this simple PCR-based genome screening strategy we were able to identify only seven NSRA strains, followed by 16S rRNA sequencing for confirmation. Through further bioassays, one potentially valuable NSRA strain (tentatively named Nocardiopsis species MMBL010) was identified which possessed both antifungal and antibacterial activities, along with the presence of polyketide synthase and non-ribosomal peptide synthase genes. Moreover, Nocardiopsis species MMBL010, which was intrinsically recalcitrant to genetic manipulation, was successfully transformed via E. coli-driven conjugation. These results suggest that PCR-based genome screening, followed by the establishment of an E. coli-driven conjugation system, is an efficient strategy to maximize potentially valuable compounds and their biosynthetic genes from NSRA strains isolated from various environments.

Three Non-Aspartate Amino Acid Mutations in the ComA Response Regulator Receiver Motif Severely Decrease Surfactin Production, Competence Development, and Spore Formation in Bacillus subtilis

  • Wang, Xiaoyu;Luo, Chuping;Liu, Youzhou;Nie, Yafeng;Liu, Yongfeng;Zhang, Rongsheng;Chen, Zhiyi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.301-310
    • /
    • 2010
  • Bacillus subtilis strains produce a broad spectrum of bioactive peptides. The lipopeptide surfactin belongs to one well-known class, which includes amphiphilic membrane-active biosurfactants and peptide antibiotics. Both the srfA promoter and the ComP-ComA signal transduction system are an important part of the factor that results in the production of surfactin. Bs-M49, obtained by means of low-energy ion implantation in wild-type Bs-916, produced significantly lower levels of surfactin, and had no obvious effects against R. solani. Occasionally, we found strain Bs-M49 decreased spore formation and the development of competence. Blast comparison of the sequences from Bs-916 and M49 indicate that there is no difference in the srfA operon promoter PsrfA, but there are differences in the coding sequence of the comA gene. These differences result in three missense mutations within the M49 ComA protein. RT-PCR analyses results showed that the expression levels of selected genes involved in competence and sporulation in both the wild-type Bs-916 and mutant M49 strains were significantly different. When we integrated the comA ORF into the chromosome of M49 at the amyE locus, M49 restored hemolytic activity and antifungal activity. Then, HPLC analyses results also showed the comA-complemented strain had a similar ability to produce surf actin with wild-type strain Bs-916. These data suggested that the mutation of three key amino acids in ComA greatly affected the biological activity of Bacillus subtilis. ComA protein 3D structure prediction and motif search prediction indicated that ComA has two obvious motifs common to response regulator proteins, which are the N-terminal response regulator receiver motif and the C-terminal helix-turn-helix motif. The three residues in the ComA N-terminal portion may be involved in phosphorylation activation mechanism. These structural prediction results implicate that three mutated residues in the ComA protein may play an important role in the formation of a salt-bridge to the phosphoryl group keeping active conformation to subsequent regulation of the expression of downstream genes.

LC15-0133, a DPP IV Inhibitor: Efficacy in Various Animal Models (LC15-0133, DPP IV 저해제: 여러 동물 모델에서의 효능)

  • Yim, Hyeon-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.5-20
    • /
    • 2008
  • GLP-1-based drugs (GLP-1 analogues and DPP IV inhibitors) and incretin mimetics are currently one of the most exciting classes of agents for type II diabetes. GLP-1, a gut peptide, is an incretin that potentiates glucose-dependent insulin release from the pancreas, slows GI-transit and stimulates the proliferation of beta-cells. DPP IV inhibitors act like incretins by inhibiting DPP IV which inactivates GLP-1. LC15-0133 is a competitive, reversible DPP IV inhibitor ($IC_{50}$ = 24 nM, Ki=0.247 nM) with excellent selectivity over other critical human proteases such as DPP II, DPP 8, elastase, trypsin. and urokinase. LC15-0133 showed long half-life and good bioavailability in rats and dogs. Inhibition of plasma DPP IV activity by LC15-0133 was kept more than 50% 24 hours after oral dosing in rats and dogs at 0.1 mg/kg and 0.02 mg/kg, respectively. The Minimum effective doses of LC15-0133 were 0.01 mg/kg for lowering blood glucose excursion during oral glucose tolerance test and 0.1 mg/kg for increasing glucose-induced GLP-1 response in C57BL/6 mice. Repeat oral administration of LC15-0133 for 1 month delayed the progression to diabetes and reduced HbA1c levels in a dose-dependent manner in Zucker Diabetic Fatty rats. In conclusion, LC15-0133 is a novel, potent, selective and orally active DPP IV inhibitor and showed an excellent blood glucose lowering effects in various animal models.

  • PDF

A Study on the Inhibition of Skin Pigmentation by Lobaric Acid as Protease Activated Receptor-2 Antagonist (Protease Activated Receptor-2의 길항제로서 Lobaric Acid의 피부 색소침착 억제 효능 연구)

  • Goo, Jung Hyun;Lee, Ji Eun;Myung, Cheol Hwan;Park, Jong Il;Hwang, Jae Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.3
    • /
    • pp.243-252
    • /
    • 2015
  • Melanosome, the pigment granule in melanocyte, determines the color of skin when it moves into the keratinocyte. Inhibition of melanosome transfer from melanocyte to keratinocyte results in skin depigmentation. Protease activated receptor-2 (PAR-2) is involved in signal transduction systems via cell membrane and increases the melasome transfer when it is activated by cleavage of their extracellular amino acid sequence by trypsin or by a peptide such as SLIGKV. Here, we showed that lobaric acid inhibited PAR-2 activation and affected the mobilization of $Ca2^+$. The uptake of fluorescent microspheres and isolated melanosomes from melan-a melanocytes to keratinocytes induced by SLIGKV were inhibited by lobaric acid. Also, confocal microscopy studies illustrated a decreased melanosome transfer to keratinocytes in melanocyte-keratinocyte co-culture system by lobaric acid. In addition, lobaric acid induced visible skin lightening effect in human skin tissue culture model, melanoderm$^{(R)}$. Our data suggest that lobaric acid could be an effective skin lightening agent that works via regulation of phagocytic activity of keratinocytes.

Antimicrobial Active Substances from Entomopathogenic Fungi (Various Applications of Entomopathogenic Fungi)

  • Shin, Tae Young;Woo, Soo Dong;Kim, Jeong Jun
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.13-13
    • /
    • 2016
  • Insects constitute the largest and most diverse group of animals in the world. They also serve as the hosts or nutrient sources for an immense assemblage of pathogens, parasites, and predators. More than 700 fungal species from 100 genera have adopted an entomopathogenic lifestyle. Although entomopathogenic fungi were studied as only biocontrol agents against a variety of pests in various countries, it has been recently focused their additional roles in nature. They are antagonists to/against plant pathogens, endophytes, and possibly even plant growth promoting agents. The potential antimicrobial effect against fungal plant pathogens by an isolate of entomopathogenic fungi including Beauveria bassiana, Lecanicillium spp., and Isaria fumosorosea have been reported since late 1990s, but wasn't reported pathogenicity of the isolate against pests. Later, a Canadian Lecanicillium sp. isolate and L. longisporium isolated from Vertalec$^{(R)}$ showed simultaneous control effect against both aphid and cucumber powder mildew. Therefore, the antimicrobial activities of 342 fungi isolates collected from various regions and conditions in Korea were evaluated against plant pathogenic fungus Botrytis cinerea using dual culture technique on agar plate. As a result, 186 isolates (54.4%) shown the antifungal activity against B. cinerea. The culture filtrates of selected fungi completely suppressed the growth of the microorganisms, indicating that suppression was due to the presence of antimicrobial substances in the culture filtrate. Mode of action of these fungi against insect involves the attachment of conidia to the insect cuticle, followed by germination, cuticle penetration, and internal dissemination throughout the insect. During infection process, secreted enzymes, proteinous toxins, and/or secondary metabolites secreted by entomopathogenic fungi can be used to overcome the host immune system, modify host behavior, and defend host resources. Recently, secondary metabolites isolated from entomopathogenic fungi have been reported as potential bioactive substances. Generally, most of bioactive substances produced by entomopathogenic fungi have reported low molecular weight (lower than 1,000 g/mol) as peptide and, in contrast the high molecular weight fungal bioactive substances are rare. Most substances based on entomopathogenic fungi were shown antimicrobial activity with narrow control ranges. In our study we analyzed the antimicrobial substances having antagonistic effects to B. cinerea. Antimicrobial substances in our fungal culture filtrates showed high thermostability, high stability to proteolytic enzymes, and hydrophilicity and their molecular weights were differed from substance. In conclusion, entomopathogenic fungi showed pathogenicity against insect pests and culture filtrate of the fungi also shown to antimicrobial activity. In the future, we can use the entomopathogenic fungi and its secondary metabolites to control both insect pest control and plant pathogenic fungi simultaneously.

  • PDF

Inhibitory Effect on Angiotensin-converting Enzyme (ACE) and Optimization for Production of Ovotransferrin Hydrolysates (Ovotransferrin 가수분해물의 Angiotensin-converting Enzyme 활성억제 효과 및 생산 최적화)

  • Lee, Na-Kyoung;Ahn, Dong-Uk;Park, Keun-Kyu;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.286-290
    • /
    • 2010
  • Angiotensin-converting enzyme (ACE) inhibitory activity and production optimization of ovotransferrin hydrolysates were studied. Ovotransferrin was hydrolyzed by several enzymes (protamex, alcalase, trypsin, pepsin, neutrase, and flavorzyme) and acid (0.03 N HCl). Ovotransferrin hydrolysate reduced ACE activity by 60.2%, 55.8%, and 42.6% when treated with trypsin, acid, and pepsin, respectively. Trypsin was selected for production of peptide having maximum AC inhibitory effect, which was greatest with 7 h hydrolysis. Central composite design determined that optimum composition of ACE inhibitory substances using substrate concentration of 20-35%, temperature of $35-55^{\circ}C$, and pH of 6.0-8.0. The optimum composition was 1% trypsin, substrate concentration of 26.32%, $51.29^{\circ}C$, and pH 6.32. Under this conditions, a maximum ACE inhibitory effect of 69.1% was evident, similar to the predicted value.

Antimicrobial activity and characterization for defensin of synthetic oligopeptides derived from Bombus ignitus (호박벌 유래 디펜신 유전자의 분자적 특성분석 및 항균 활성)

  • Kang, Heui-Yun;Kim, In-Woo;Lee, Joon-Ha;Kwon, Young Nam;Yun, Eun-Young;Yoon, Hyung Joo;Kim, Seong-Ryul;Kim, Iksoo;Hwang, Jae-Sam
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.161-165
    • /
    • 2012
  • Antimicrobial peptides of insects are found and reported as immune defence system against infectious agents. The peptides are produced by fat body cells and thrombocytoids, a blood cell type. Defensin is 38-45 amino acids long and consists of an ${\alpha}$-helix linked by a loop to an antiparallel ${\beta}$-sheet. Defensin from a bumblebee, Bombus ignitus, is known to comprise 52 amino acid residues. This peptide consists of two ${\alpha}$-helixes; ACAANCLSM and KTNFKDLWDKRF and one ${\beta}$-sheet; GGRCENGVCLCR. We carried out antibacterial activity test by radial diffusion assay against Staphylococcus aureus (Gram positive), Escherichia coli (Gram negative), Pseudomonas syringae (Gram negative), Candida albicans (fungi), MDRPA, MRSA, and VRE (antimicrobial resistant microbes) with synthetic oligopeptides from Peptron (Daejeon, Korea). The predicted curtailment fragment (GGRCEVCLCR-$NH_2$) for ${\beta}$-sheet had strong antibacterial activity when internal amino acids were removed. But, curtailment fragments (ACAANCLSM-$NH_2$ and TNFKDLWDKR-$NH_2$) of ${\alpha}$-helix were not showed antibacterial activity. These synthetic oligopeptides were showed the great activity against Gram positive and negative bacteria.

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung;Choi, Jong Hee;Oh, Jinhee;Lee, Young Hyun;In, Jun-Gyo;Chang, Byung-Joon;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.433-441
    • /
    • 2021
  • Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.