• Title/Summary/Keyword: R&D capacity

Search Result 893, Processing Time 0.027 seconds

Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries (리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향)

  • Im, Chae-Nam;Ahn, Tae-Young;Yu, Hye-Ryeon;Ha, Sang Hyeon;Yeo, Jae Seong;Cho, Jang-Hyeon;Yoon, Hyun-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

MiR-886-5p Inhibition Inhibits Growth and Induces Apoptosis of MCF7 Cells

  • Zhang, Lei-Lei;Wu, Jiang;Liu, Qiang;Zhang, Yan;Sun, Zhu-Lei;Jing, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1511-1515
    • /
    • 2014
  • Background and Aims: To explore the molecular mechanisms of miR-886-5p in breast cancer., we examined roles in inhibiting growth and migration of MCF-7 cells. Methods: MiR-886-5p mimics and inhibitors were used to express or inhibit MiR-886-5p, respectively, and MTT and clone formation assays were used to determine the survival and proliferation. Hoechst 33342/ PI double staining was applied to detect apoptosis. The expression of caspase-3, caspase-8, caspase-9, MT1-MMP, VEGF-C and VEGF-D was detected by Western blotting, and the levels of MMP2 and MMP9 secreted from MCF-7 cells were assessed by ELISA. MCF-7 cell migration was determined by wound healing and Transwell assays. Results: We found that the growth of MCF-7 cells was inhibited upon decreasing miR-886-5p levels. Inhibiting miR-866-5p also significantly induced apoptosis and decreased the migratory capacity of these cells. The expression of VEGF-C, VEGF-D, MT1-MMP, MMP2, and MMP9 was also found to be decreased as compared to controls. Conclusions: Our data show that downregulation of miR-886-5p expression in MCF-7 cells could significantly inhibit cell growth and migration. This might imply that inhibiting miR-886-5p could be a therapeutic strategy in breast cancer.

A Study on Thermal Behaviors of Expanded Graphite/Erythritol Composites (팽창흑연/에리스리톨 복합체의 열적거동에 관한 연구)

  • Choi, Bo-Kyung;Choi, Woong-Ki;Kuk, Yun-Su;Kim, Hong-Gun;Seo, Min-Kang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.463-467
    • /
    • 2014
  • In this paper, the thermal behaviors of expanded graphite(EG)/erythritol composites with different contents of EG were studied. The surface and structure properties of the composites were determined by using scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD), respectively. The thermal properties were investigated by differential scanning calorimetry (DSC) and thermal conductivity (TC). As experimental results, the thermal conductivity of the composites increased with increasing the EG content. However, the latent heat was somewhat decreased in the presence of EG. We could concluded that EG was highly promising materials for improving the heat transfer enhancement and energy storage capacity of phase change materials (PCMs).

Study on The Supplying effect of Gas Air Conditioning Systems (가스냉방 보급효과에 대한 연구)

  • Han, J.O.;Chae, J.M.;Choi, K.S.;Hong, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.19-25
    • /
    • 2011
  • Generally, the generation methods of cooling energy are electric air conditioning (EAC) and gas air conditioning (GAC). The EAC system is caused by increasing peak power during summer. Because the electric energy has a characteristic of non-storage, the peak electric load has been issued social problem annually whether the facility to supply is enough or not. Another way to supply cooling energy, GAC system is worked by gas energy. The absorption chiller and gas engine heat pump have been commercialized for cooling. However, the total capacity of GAC is much less than EAC and it almost depends on EAC for small market. This paper described the status of cooling energy consumption in domestic and expected the cooling energy to be consumed by electric and gas energy up to 2024 year. And also the benefit of GAC was analyzed with the case of its expansion and it was aimed to give background to fit the GAC policy.

Structure and Isolation of Xanthine Oxidase Inhibitor from Oolong Tea (우롱차로부터 Xanthine Oxidase 저해물질 분리 및 구조)

  • An, Bong-Jeun;Kim, Won-Keuk;Choi, Jang-Youn;Kwon, Ik-Boo;Choi, Cheong
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.558-562
    • /
    • 1992
  • Xanthine oxidase involved in pruine metabolism oxidizes hypoxanthine to xanthine and xanthine to uric acid. The derangement of pruine metabolism results in gout that associates painful deposit of monosodium urate in the cartilage of joints. In the continuous study for natural compound, six flavan-3-ols have been isolated from the leaves of Oolong tea. The structures of procyanidin B-1, B-3, procyanidin B-3-3-O-rhamnose, procyanidin B-1-3-O-gallate, (-)-epicatechin, (-)-epicatechin-3-O-gallate were established by NMR and their inhibitory effect on xanthine oxidase activity was investigated. Flavan-3-ols containing the gallate had a high inhibitory capacity. Procyanidin B-1-3-O-gallate showed complete inhibition at $50\;{\mu}M$ and inhibited on the xanthine oxidase competitively.

  • PDF

Improvement of the Biocompatibility of Chitosan Dermal Scaffold by Rigorous Dry Heat Treatment

  • Kim, Chun-Ho;Park, Hyun-Sook;Gin, Yong-Jae;Son, Young-Sook;Lim, Sae-Hwan;Park, Young-Ju;Park, Ki-Sook;Park, Chan-Woong
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.367-373
    • /
    • 2004
  • We have developed a rigorous heat treatment method to improve the biocompatibility of chitosan as a tissue-engineered scaffold. The chitosan scaffold was prepared by the controlled freezing and lyophilizing method using dilute acetic acid and then it was heat-treated at 110$^{\circ}C$ in vacuo for 1-3 days. To explore changes in the physicochemical properties of the heat-treated scaffold, we analyzed the degree of deacetylation by colloid titration with poly(vinyl potassium sulfate) and the structural changes were analyzed by scanning electron microscopy, Fourier transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffractometry (WAXD), and lysozyme susceptibility. The degree of deacetylation of chitosan scaffolds decreased significantly from 85 to 30% as the heat treatment time increased. FT-IR spectroscopic and WAXD data indicated the formation of amide bonds between the amino groups of chitosan and acetic acids carbonyl group, and of interchain hydrogen bonding between the carbonyl groups in the C-6 residues of chitosan and the N-acetyl groups. Our rigorous heat treatment method causes the scaffold to become more susceptible to lysozyme treatment. We performed further examinations of the changes in the biocompatibility of the chitosan scaffold after rigorous heat treatment by measuring the initial cell binding capacity and cell growth rate. Human dermal fibroblasts (HDFs) adhere and spread more effectively to the heat-treated chitosan than to the untreated sample. When the cell growth of the HDFs on the film or the scaffold was analyzed by an MTT assay, we found that rigorous heat treatment stimulated cell growth by 1.5∼1.95-fold relative to that of the untreated chitosan. We conclude that the rigorous dry heat treatment process increases the biocompatibility of the chitosan scaffold by decreasing the degree of deacetylation and by increasing cell attachment and growth.

Evaluation of SCI for Basic Research Programs in Science and Technology Measured at the Quality Level of Individual Articles (개별 논문의 질적 수준에서 측정한 과학기술분야 기초연구사업의 SCI 성과 분석)

  • Lee, BangRae;Yim, JongYeon;Lee, WooJoo;Won, DongKyu
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.9
    • /
    • pp.11-25
    • /
    • 2019
  • In Korea, there is a high demand for the operation of differentiated programs in basic research considering the characteristics of academic fields. The results of this study shows that the higher the level of research competence, the higher the quality of research outputs. The results also tell us that the quality level of the research outputs is different according to the field of study. Based on the results, we propose a method to differentiate the selection rate of each discipline in the system that operates the individual basic research projects by the level of research capacity.

Analysis of Factors Affecting Company Growth using PLS Structural Equation (PLS 구조방정식을 이용한 기업성장 영향요인 분석)

  • Seong, Byungho;Kim, Taesung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.209-219
    • /
    • 2019
  • This study analyzed the impacts and factors of the government's local industry upbringing policy on business growth. We analyzed the effect of product innovation and technological innovation on business competence, external cooperation level, R&D investment, and corporate growth using PLS(Partial Least Squares) structural equation. The results show that management competence and external cooperation level have a significant effect on firm growth and that there is a moderating effect between beneficiaries and non-beneficiaries. Management competence affects product innovation. Product innovation was analyzed to have mediating effects on firm growth. Finally, the policy direction of increasing managerial capacity is presented, and the limitations and future research directions are suggested.

Antitumor profiles and cardiac electrophysiological effects of aurora kinase inhibitor ZM447439

  • Lee, Hyang-Ae;Kwon, Miso;Kim, Hyeon-A;Kim, Ki-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.393-402
    • /
    • 2019
  • Aurora kinases inhibitors, including ZM447439 (ZM), which suppress cell division, have attracted a great deal of attention as potential novel anti-cancer drugs. Several recent studies have confirmed the anti-cancer effects of ZM in various cancer cell lines. However, there have been no studies regarding the cardiac safety of this agent. We performed several cytotoxicity, invasion and migration assays to examine the anti-cancer effects of ZM. To evaluate the potential effects of ZM on cardiac repolarisation, whole-cell patch-clamp experiments were performed with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cells with heterogeneous cardiac ion channel expression. We also conducted a contractility assay with rat ventricular myocytes to determine the effects of ZM on myocardial contraction and/or relaxation. In tests to determine in vitro efficacy, ZM inhibited the proliferation of A549, H1299 (lung cancer), MCF-7 (breast cancer) and HepG2 (hepatoma) cell lines with $IC_{50}$ in the submicromolar range, and attenuated the invasive and metastatic capacity of A549 cells. In cardiac toxicity testing, ZM did not significantly affect $I_{Na}$, $I_{Ks}$ or $I_{K1}$, but decreased $I_{hERG}$ in a dose-dependent manner ($IC_{50}$: $6.53{\mu}M$). In action potential (AP) assay using hiPSC-CMs, ZM did not induce any changes in AP parameters up to $3{\mu}M$, but it at $10{\mu}M$ induced prolongation of AP duration. In summary, ZM showed potent broad-spectrum anti-tumor activity, but relatively low levels of cardiac side effects compared to the effective doses to tumor. Therefore, ZM has a potential to be a candidate as an anti-cancer with low cardiac toxicity.

Modeling to Estimate the Cycle Life of a Lithium-ion Battery (리튬이온전지의 사이클 수명 모델링)

  • Lee, Jaewoo;Lee, Dongcheul;Shin, Chee Burm;Lee, So-Yeon;Oh, Seung-Mi;Woo, Jung-Je;Jang, Il-Chan
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.393-398
    • /
    • 2021
  • In order to optimize the performance of a lithium-ion battery, a performance prediction modeling technique that considers various degradation factors is required. In this work, mathematical modeling was carried-out to predict the change in discharging behavior and cycle life, taking into account the cycle aging of lithium-ion batteries. In order to validate the modeling, a cycling test was performed at the charge/discharge rate of 0.25C, and discharging behavior was measured through RPT (Reference Performance Test) performed at 30 cycle intervals. The accuracy of cycle life prediction was improved by considering the break-in mechanism, one of the phenomena occurring in the BOL (beginning of life), in the model for predicting the cycle life of lithium-ion batteries. The predicted change in cycle life based on the model was in good agreement with the experimental results.