• Title/Summary/Keyword: R&D 연구개발투자

Search Result 549, Processing Time 0.028 seconds

An Analytical Study on Rational use of Undersea Space (해저공간의 합리적 활용을 위한 분석적 연구)

  • Won-Jo Jung;Nam-Ki Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.147-154
    • /
    • 2023
  • This study aims to determine the necessity, role, utilization, and operation and management plan in relation to the underwater space platform where humans can newly reside. It provides a comprehensive opinion on the need for creating undersea space and operation plans based on opinions of industry-university-affiliated organizations involved in the R&D project of the Ministry of Maritime Affairs and Fisheries for the utilization of undersea space and external experts participating in marine technology development. In this study, a survey was conducted on researchers participating in the construction of a Korean submarine space platform. FGI was conducted on marine technology development experts. Results were then derived. As a result of the analysis, the need for subsea space construction was found to be high. As for the role of subsea space, the most common opinion was to develop technology for utilizing subsea space and to secure marine science research functions. It was found that the creation of subsea space would have a positive impact on the domestic industry, especially the deep-sea development industry and the shipbuilding/offshore structure industry. In terms of utilization, after the end of the seabed space test bed, the response to utilization as a marine observation base and marine ecosystem research had the highest proportion. As for expected inconvenience, discomfort in the psychological environment was the highest. Experts suggest that securing a continuous budget is most important for stable operation in the future and that securing a manpower budget is essential for itemized budgets. In addition, it was judged that it would be appropriate to establish a prior agreement from the time of the prior agreement and prepare a countermeasure before proceeding with the project in order to ensure ownership issues, consignment management issues, and cost issues when using the project after the end of the project.

Technology Innovation Activity and Default Risk (기술혁신활동이 부도위험에 미치는 영향 : 한국 유가증권시장 및 코스닥시장 상장기업을 중심으로)

  • Kim, Jin-Su
    • Journal of Technology Innovation
    • /
    • v.17 no.2
    • /
    • pp.55-80
    • /
    • 2009
  • Technology innovation activity plays a pivotal role in constructing the entrance barrier for other firms and making process improvement and new product. and these activities give a profit increase and growth to firms. Thus, technology innovation activity can reduce the default risk of firms. However, technology innovation activity can also increase the firm's default risk because technology innovation activity requires too much investment of the firm's resources and has the uncertainty on success. The purpose of this study is to examine the effect of technology innovation activity on the default risk of firms. This study's sample consists of manufacturing firms listed on the Korea Securities Market and The Kosdaq Market from January 1,2000 to December 31, 2008. This study makes use of R&D intensity as an proxy variable of technology innovation activity. The default probability which proxies the default risk of firms is measured by the Merton's(l974) debt pricing model. The main empirical results are as follows. First, from the empirical results, it is found that technology innovation activity has a negative and significant effect on the default risk of firms independent of the Korea Securities Market and Kosdaq Market. In other words, technology innovation activity reduces the default risk of firms. Second, technology innovation activity reduces the default risk of firms independent of firm size, firm age, and credit score. Third, the results of robust analysis also show that technology innovation activity is the important factor which decreases the default risk of firms. These results imply that a manager must show continuous interest and investment in technology innovation activity of one's firm. And a policymaker also need design an economic policy to promote the technology innovation activity of firms.

  • PDF

A Study on the Profitability Enhancement of SI Business in Public and Finance Sector (공공(公共)/금융분야(金融分野) SI사업(事業)의 수익성(收益性) 향상(向上) 방안(方案)에 관한 연구(硏究))

  • Joo, Jeong-Soo;Jahng, Jung-Joo;Cho, Hurn-Jin
    • Information Systems Review
    • /
    • v.12 no.1
    • /
    • pp.165-188
    • /
    • 2010
  • Recently public and finance SI (system integration) industry is called as 4D (difficult, dangerous, dirty, dreamless) industry because of low profit, overtime works and poor motivation of employees. Even some people think at SI industry to be a labor intensive industry instead of a high technology industry. The current study considers outside environmental change of SI industry as well as inside capability enhancement of SI companies. The study adopted action research method with the author's expertise and experiences as a head of a major SI company in Korea. The current research framework suggests 5 areas of profitability enhancement that offers propositions and implications. 5 areas of profitability enhancement are (1) policy improvement, (2) business portfolio innovation (3) sales capability reinforcement, (4) delivery capability reinforcement, and (5) cost management innovation. The five areas include 11 propositional factors and 21 implementation plans which were chosen from the profitability perspectives of SI companies.In order to successfully execute propositions and implementation plans of the framework, 3 years is needed and after 3 years profitability are expected to increase 10% higher than the current level. The framework, propositions and suggestions in this study are expected to offer a real contribution for SI companies that want to enhance competitiveness and profitability. Future extension of the current study to benchmarking the competitiveness and profitability between local companies and global companieswill bring a solid attention from industry and academics.

The Production Structure of Genetic Information in South Korea (한국의 유전적 정보 생산 구조)

  • Yi Cheong-Ho
    • Journal of Science and Technology Studies
    • /
    • v.5 no.1 s.9
    • /
    • pp.55-92
    • /
    • 2005
  • The factors contributing to the formation of an important scientific concept in South Korea and its circulation in the society are the scientific knowledge that had been already formed, matured, and established in the U.S.A, Europe and Japan and has been introduced into Korea, and the institutions that have been formed during the recent modernization in South Korea. The concept of 'genetic information' cannot be an exception in this context. The concept of genetic information is the one that has been extended and intensified by the genomics and bioinformatics formed and matured through the Human Genome Projects from the former concept of inheritance or heredity within the framework of classical and molecular genetics. The purpose of this study was to find out 'how the production structure of genetic information in South Korea has been formed', under the perspective of the conceptual, epistemic, and institutional holisticity or integratedness in the concept and knowledge production structure idealized in Western advanced nations. The discourse of genetic engineering popular in the mid 1980's in South Korea has catalyzed the development of molecular biology. However, the institutional balance that had been established for the biochemistry departments in Natural Science College and Medical College was not formed between the genetic engineering and genetics departments in South Korea. Therefore, they were unable to achieve the more integrative and macro-level disciplinary impact on life sciences, largely due to institutional lack of the capable (human) genetics departments in some leading Korean colleges of Medicine. In genomics, the cutting-edge reprogramming and restructuring of the traditional genetics in the West, South Korea has not invested, even meagerly, in the infrastructure, fund, and research and development (R & D) for the Basic or First Phase of the research trajectory in the Human Genome Project. Without a minimal Basic Phase, the genomics research and development in Korea has been running more or less for the Advanced or Second Phase. Bioinformatics has started developing in Korea under a narrow perspective which regards it as a mere sub-discipline of information technology (IT). Having developed itself in parallel with genomics, bioinformatics contains its own unique logics and contents that can be both directly and indirectly connected to the information science and technology. As a result, bioinformatics reveals a defect in respect of being synergistically integrated into genetics and life sciences in Korea. Owing to the structural problem in the production, genetic information appears to be produced in a fragmented pattern in the Korean society since its fundamental base is weak and thin. A good example of the conceptual and institutional fragmentedness is that 'the genetics of individual identification' is not a normal integrated part of the Korean genetics, but a scientific practice exercised in the departments of legal medicine in a few Medical Colleges. And the environment contributing to the production structure of genetic information in South Korea today comprises 'sangmyung gonghak'(or life engineering) discourse and non-governmental organization movement.

  • PDF

The Innovation Ecosystem and Implications of the Netherlands. (네덜란드의 혁신클러스터정책과 시사점)

  • Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.107-127
    • /
    • 2022
  • Global challenges such as the corona pandemic, climate change and the war-on-tech ensure that the demand who the technologies of the future develops and monitors prominently for will be on the agenda. Development of, and applications in, agrifood, biotech, high-tech, medtech, quantum, AI and photonics are the basis of the future earning capacity of the Netherlands and contribute to solving societal challenges, close to home and worldwide. To be like the Netherlands and Europe a strategic position in the to obtain knowledge and innovation chain, and with it our autonomy in relation to from China and the United States insurance, clear choices are needed. Brainport Eindhoven: Building on Philips' knowledge base, there is create an innovative ecosystem where more than 7,000 companies in the High-tech Systems & Materials (HTSM) collaborate on new technologies, future earning potential and international value chains. Nearly 20,000 private R&D employees work in 5 regional high-end campuses and for companies such as ASML, NXP, DAF, Prodrive Technologies, Lightyear and many others. Brainport Eindhoven has a internationally leading position in the field of system engineering, semicon, micro and nanoelectronics, AI, integrated photonics and additive manufacturing. What is being developed in Brainport leads to the growth of the manufacturing industry far beyond the region thanks to chain cooperation between large companies and SMEs. South-Holland: The South Holland ecosystem includes companies as KPN, Shell, DSM and Janssen Pharmaceutical, large and innovative SMEs and leading educational and knowledge institutions that have more than Invest €3.3 billion in R&D. Bearing Cores are formed by the top campuses of Leiden and Delft, good for more than 40,000 innovative jobs, the port-industrial complex (logistics & energy), the manufacturing industry cluster on maritime and aerospace and the horticultural cluster in the Westland. South Holland trains thematically key technologies such as biotech, quantum technology and AI. Twente: The green, technological top region of Twente has a long tradition of collaboration in triple helix bandage. Technological innovations from Twente offer worldwide solutions for the large social issues. Work is in progress to key technologies such as AI, photonics, robotics and nanotechnology. New technology is applied in sectors such as medtech, the manufacturing industry, agriculture and circular value chains, such as textiles and construction. Being for Twente start-ups and SMEs of great importance to the jobs of tomorrow. Connect these companies technology from Twente with knowledge regions and OEMs, at home and abroad. Wageningen in FoodValley: Wageningen Campus is a global agri-food magnet for startups and corporates by the national accelerator StartLife and student incubator StartHub. FoodvalleyNL also connects with an ambitious 2030 programme, the versatile ecosystem regional, national and international - including through the WEF European food innovation hub. The campus offers guests and the 3,000 private R&D put in an interesting programming science, innovation and social dialogue around the challenges in agro production, food processing, biobased/circular, climate and biodiversity. The Netherlands succeeded in industrializing in logistics countries, but it is striving for sustainable growth by creating an innovative ecosystem through a regional industry-academic research model. In particular, the Brainport Cluster, centered on the high-tech industry, pursues regional innovation and is opening a new horizon for existing industry-academic models. Brainport is a state-of-the-art forward base that leads the innovation ecosystem of Dutch manufacturing. The history of ports in the Netherlands is transforming from a logistics-oriented port symbolized by Rotterdam into a "port of digital knowledge" centered on Brainport. On the basis of this, it can be seen that the industry-academic cluster model linking the central government's vision to create an innovative ecosystem and the specialized industry in the region serves as the biggest stepping stone. The Netherlands' innovation policy is expected to be more faithful to its role as Europe's "digital gateway" through regional development centered on the innovation cluster ecosystem and investment in job creation and new industries.

International Comparative Analysis of Technical efficiency in Korean Manufacturing Industry (한국 제조업의 기술적 효율성 국제 비교 분석)

  • Lee, Dong-Joo
    • Korea Trade Review
    • /
    • v.42 no.5
    • /
    • pp.137-159
    • /
    • 2017
  • This study divides manufacturing in 18 countries including Korea, China, Japan and OECD countries into 11 areas and estimates and compares the technological efficiency of each industry. The traditional view of productivity is to increase production capacity through technological innovation or process innovation, but it is also influenced by the technological efficiency of production process. A Stochastic Frontier Production Model (SFM) is a representative method for estimating the technical efficiency of such production. First, as a result of estimating the production function by setting the output variable as total output or value-added, in both cases, the output increased significantly in all manufacturing sectors as inputs of labor, capital, and intermediate increased. On the other hand, R&D investment has a large impact on output in chemical, electronics, and machinery industries. Next, as a result of estimating the technological efficiency through the production function, when the total output is set as the output variable, the overall average of each sector is 0.8 or more, showing mostly high efficiency. However, when value-added was set, Japan had the highest level in most manufacturing sectors, while other countries were lower than the efficiency of the total output. Comparing the three countries of Korea, China and Japan, Japan showed the highest efficiency in most manufacturing sectors, and Korea was about half or one third of Japan and China was lower than Korea. However, in the food and electronics sectors, China is higher than Korea, indicating that China's production efficiency has greatly improved. As such, Korea is not able to narrow its gap with Japan relatively faster than China's rapid growth. Therefore, various policy supports are needed to promote technology development. In addition, in order to improve manufacturing productivity, it is necessary to shift to an economic structure that can raise technological efficiency as well as technology development.

  • PDF

Economic Feasibility Analysis Study to Build a Plant-based Alternative Meat Industrialization Center (식물성 기반 대체육 산업화센터 구축을 위한 경제적 타당성 분석)

  • Yong Kwang Shin;So Young Lee;Jae Chang Joo
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.118-126
    • /
    • 2024
  • Recently, the alternative meat (food) market is growing rapidly due to the increase in meat consumption due to global population growth and income improvement, as well as issues such as equal welfare, carbon neutrality, and sustainability. The government is also developing a green bio convergence new industry development plan to foster alternative foods, but there are difficulties in commercialization due to the lack of technology and insufficient production facilities among domestic small and medium-sized enterprises, so it is necessary to build joint utilization facilities and equipment to resolve the difficulties faced by companies. am. In addition, small and medium-sized enterprises are having difficulty developing and commercializing plant-based meat substitutes due to a lack of technical skills, and related equipment is expensive, making it difficult to build equipment on their own. Accordingly, Jeollabuk-do is pursuing a strategy to secure the source technology for development, processing, and industrialization of plant-based substitute meat at the level of developed countries by establishing a plant-based alternative meat industrialization center. In this study, an economic feasibility analysis study was conducted when a plant-based alternative meat industrialization center is built in Jeollabuk-do. As a result of the analysis, B/C=1.32, NPV=374 million won, and IRR=4.8%, showing that there is economic feasibility in establishing an alternative meat industrialization center. In addition, as a result of analyzing the regional economic ripple effect resulting from the establishment of an industrialization center, if 38 billion won is invested in Jeollabuk-do, the nationwide production inducement effect is 74 billion won, the added value inducement effect is 29.8 billion won, and the employment inducement effect is 672 people

A Study of the Core Factors Affecting the Performance of Technology Management of Inno-Biz SMEs (기술혁신형(Inno-Biz) 중소기업의 기술경영성과에 미치는 핵심요인에 관한 연구)

  • Yoon, Heon-Deok;Seo, Ri-Bin
    • Journal of Technology Innovation
    • /
    • v.19 no.1
    • /
    • pp.111-144
    • /
    • 2011
  • This study is to confirm the core factors of innovative capabilities and technological entrepreneurship affecting the performance of technology management and business management of small and medium-sized enterprises (SMEs). Through the consideration about the complex natures of technological innovation affecting by multidimensional factors, this study designs the research model that innovative capabilities, the performances of technology and business management are arranged in accordance with the innovation process; input-output-outcome. To meet this research purpose, the hypothesis are set up based on the previous research studies and the research samples are selected from members of the Innovative Business (INNO-BIZ) Association, located in Seoul and Geyonggi province. As a result of regression analysis to the responses gathered from 360 firms, the performance of business management is influenced positively by the technology superiority, market growth and business profitability which are the dominant factors of performance of technology management. In addition, three sub-variables of innovative capabilities such as R&D, strategic planning and learning capability, have positive effects on both the managerial performances. Innovativeness and progressiveness of technological entrepreneurship affect both the performances positively. Moreover, the co-relation between technological entrepreneurship of an innovation leader and innovative capabilities of organizational members are identified. Lastly, technological entrepreneurship has the mediating effect on the path of leading innovative capabilities to the managerial performances. In conclusion, the research results imply that technological innovation-type firms should periodically evaluate the performance of technology management which are the output of technological innovations and the reinvestment for ultimate business success. And improving and developing innovative capabilities and technological entrepreneurship is required to continuously and consistently investing and supporting resources on technological innovations at the firm-and government-level. It is considered that these are the crucial methods for securing the technologically competitive advantage of SMEs with less resources and narrow innovation range.

  • PDF

The Impact of Human Resource Innovativeness, Learning Orientation, and Their Interaction on Innovation Effect and Business Performance : Comparison of Small and Medium-Sized vs. Large-Sized Companies (인적자원의 혁신성, 학습지향성, 이들의 상호작용이 혁신효과 및 사업성과에 미치는 영향 : 중소기업과 대기업의 비교연구)

  • Yoh, Eunah
    • Korean small business review
    • /
    • v.31 no.2
    • /
    • pp.19-37
    • /
    • 2009
  • The purpose of this research is to explore differences between small and medium-sized companies and large-sized companies in the impact of human resource innovativeness(HRI), learning orientation(LO), and HRI-LO interaction on innovation effect and business performance. Although learning orientation has long been considered as a key factor influencing good performance of a business, little research was devoted to exploring the effect of HRI-LO interaction on innovation effect and business performance. In this study, it is investigated whether there is a synergy effect between innovative human workforce and learning orientation corporate culture, in addition to each by itself, to generate good business performance as well as a success of new innovations in the market. Research hypotheses were as follows, including H1) human resource innovativeness(HRI), learning orientation(LO), and interactions of HRI and LO(HRI-LO interaction) positively affect innovation effect, H2) there is a difference of the effect of HRI, LO, and HRI-LO interaction on innovation effect between large-sized and small-sized companies, H3) HRI, LO, HRI-LO interaction, innovation effect positively affect business performance, and H4) there is a difference of the effect of HRI, LO, HRI-LO interaction, and innovation effect on business performance between large-sized and small-sized companies. Data were obtained from 479 practitioners through a web survey since the web survey is an efficient method to collect a national data at a variety of fields. A single respondent from a company was allowed to participate in the study after checking whether they have more than 5-year work experiences in the company. To check whether a common source bias is existed in the sample, additional data from a convenient sample of 97 companies were gathered through the traditional survey method, and were used to confirm correlations between research variables of the original sample and the additional sample. Data were divided into two groups according to company size, such as 352 small and medium-sized companies with less than 300 employees and 127 large-sized companies with 300 or more employees. Data were analyzed through t-test and regression analyses. HRI which is the innovativeness of human resources in the company was measured with 9 items assessing the innovativenss of practitioners in staff, manager, and executive-level positions. LO is the company's effort to encourage employees' development, sharing, and utilizing of knowledge through consistent learning. LO was measured by 18 items assessing commitment to learning, vision sharing, and open-mindedness. Innovation effect which assesses a success of new products/services in the market, was measured with 3 items. Business performance was measured by respondents' evaluations on profitability, sales increase, market share, and general business performance, compared to other companies in the same field. All items were measured by using 6-point Likert scales. Means of multiple items measuring a construct were used as variables based on acceptable reliability and validity. To reduce multi-collinearity problems generated on the regression analysis of interaction terms, centered data were used for HRI, LO, and Innovation effect on regression analyses. In group comparison, large-sized companies were superior on annual sales, annual net profit, the number of new products/services in the last 3 years, the number of new processes advanced in the last 3 years, and the number of R&D personnel, compared to small and medium-sized companies. Also, large-sized companies indicated a higher level of HRI, LO, HRI-LO interaction, innovation effect and business performance than did small and medium-sized companies. The results indicate that large-sized companies tend to have more innovative human resources and invest more on learning orientation than did small-sized companies, therefore, large-sized companies tend to have more success of a new product/service in the market, generating better business performance. In order to test research hypotheses, a series of multiple-regression analysis was conducted. In the regression analysis examining the impact on innovation effect, important results were generated as : 1) HRI, LO, and HRI-LO affected innovation effect, and 2) company size indicated a moderating effect. Based on the result, the impact of HRI on innovation effect would be greater in small and medium-sized companies than in large-sized companies whereas the impact of LO on innovation effect would be greater in large-sized companies than in small and medium-sized companies. In other words, innovative workforce would be more important in making new products/services that would be successful in the market for small and medium-sized companies than for large-sized companies. Otherwise, learning orientation culture would be more effective in making successful products/services for large-sized companies than for small and medium-sized companies. Based on these results, research hypotheses 1 and 2 were supported. In the analysis of a regression examining the impact on business performance, important results were generated as : 1) innovation effect, LO, and HRI-LO affected business performance, 2) HRI by itself did not have a direct effect on business performance regardless of company size, and 3) company size indicated a moderating effect. Specifically, an effect of the HRI-LO interaction on business performance was stronger in large-sized companies than in small and medium-sized companies. It means that the synergy effect of innovative human resources and learning orientation culture tends to be stronger as company is larger. Referring to these result, research hypothesis 3 was partially supported whereas hypothesis 4 was supported. Based on research results, implications for companies were generated. Regardless of company size, companies need to develop the learning orientation corporate culture as well as human resources' innovativeness together in order to achieve successful development of innovative products and services as well as to improve sales and profits. However, the effectiveness of the HRI-LO interaction would be varied by company size. Specifically, the synergy effect of HRI-LO was stronger to make a success of new products/services in small and medium-sized companies than in large-sized companies. However, the synergy effect of HRI-LO was more effective to increase business performance of large-sized companies than that of small and medium-sized companies. In the case of small and medium-sized companies, business performance was achieved more through the success of new products/services than much directly affected by HRI-LO. The most meaningful result of this study is that the effect of HRI-LO interaction on innovation effect and business performance was confirmed. It was often ignored in the previous research. Also, it was found that the innovativeness of human workforce would not directly influence in generating good business performance, however, innovative human resources would indirectly affect making good business performance by contributing to achieving the development of new products/services that would be successful in the market. These findings would provide valuable managerial implications specifically in regard to the development of corporate culture and education program of small and medium-sized as well as large-sized companies in a variety of fields.