• Title/Summary/Keyword: Quinolone resistance

Search Result 69, Processing Time 0.032 seconds

Characterization of plasmid-mediated quinolone resistance genes in Enterobacteriaceae isolated from companion animals (반려동물 유래 장내세균에서 plasmid 매개 퀴놀론 내성 유전자의 특성)

  • Cho, Jae-Keun;Kim, Jeong-Mi;Kim, Hwan-Deuk;Kim, Kyung-Hee;Lim, Hyun-Suk;Yang, Chang-Ryoul
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • The aim of this study was to investigate the prevalence and characterization of plasmid-mediated quinolone resistance (PMQR) gene in 79 Enterobacteriaceae isolated from dogs and cats. Of 79 isolates, PMQR genes were found in 10 (12.7%) isolates, including aac(6')-lb-cr, qnrB, qnrS and qnrA detected alone or in combination in 8 (10.1%), 4 (5.1%), 2 (2.5%) and 1 (1.3%) isolates, respectively. Interestingly, two qnrS genes were detected in nalidixic acid and ciprofloxacin susceptible isolates. Extended-spectrum ${\beta}$-lactamase (ESBL) was detected in 90% (9 isolates) of PMQR positives isolates. Among ESBL genes, CTX-M, TEM and SHV were detected in 9, 8 and 3 isolates, respectively. Almost all PMQR genes were detected in co-existence with ESBL genes. All PMQR positives isolates were multidrug resistance (i.e. resistant to five or more antibiotics). qepA, OXA and CMY-2 genes were not found. The six transconjugants were obtained by conjugation experiment. The aac(6')-lb-cr, qnrB and qnrS were co-transferred with CTX-M, TEM and/or SHV, whereas qnrA was not observed among transconugants. This is the first report of the presence of aac(6')-lb-cr and qnrA gene among Enterobacteriaceae isolates from dogs in Korea. The prudent use of antimicrobials and continuous monitoring for companion animals are required.

Genotypic characterization of fluoroquinolone-resistant Escherichia coli isolates from edible offal

  • Son, Se Hyun;Seo, Kwang Won;Kim, Yeong Bin;Noh, Eun Bi;Lee, Keun-Woo;Oh, Tae-Ho;Kim, Seung-Joon;Song, Jae-Chan;Kim, Tae-Wan;Lee, Young Ju
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.3
    • /
    • pp.173-177
    • /
    • 2020
  • Edible offal is easily contaminated by Escherichia coli (E. coli) and fluoroquinolone (FQ)-resistant E. coli is considered a serious public health problem, thus, this study investigated the genetic characteristics of FQ-resistant E. coli from edible offal. A total of 22 FQ-resistant E. coli isolates were tested. A double mutation in each gyrA and parC led the highest MIC. Four (18.2%) isolates carried plasmid-mediated quinolone resistance genes. The fimH, eaeA, escV, astA, and iucC genes were confirmed. Seventeen isolates (77.3%) were positive for plasmid replicons. The isolates showed high genetic heterogeneity based on pulsed-field gel electrophoresis patterns.

Mutations in the GyrA Subunit of DNA Gyrase and the ParC Subunit of Topoisomerase IV in Clinical Strains of Fluoroquinolone-Resistant Shigella in Anhui, China

  • Hu, Li-Fen;Li, Jia-Bin;Ye, Ying;Li, Xu
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.168-170
    • /
    • 2007
  • In this research 26 Shigella isolates were examined by PCR and direct nucleotide sequencing for genetic alterations in the quinolone-resistance determining regions (QRDRs). We tested for the presence of qnr genes by PCR in 91 strains, but no qnr genes were found. The results did show, however, some novel mutations at codon 83 of gyrA ($Ser{\rightarrow}Ile$) and codon 64 of parC ($Ala64{\rightarrow}Cys,\;Ala64{\rightarrow}Asp$), which were related to fluroquinolone resistance.

Distribution of Antimicrobial Resistant Genes in Acinetobacter calcoaceticus-baumannii Complex Isolated from Clinical Specimens in Chungcheong, Korea (충청지역의 임상검체로부터 분리된 Acinetobacter calcoaceticus-baumannii Complex를 대상으로 항균제 내성 유전자 비교분석)

  • Sung, Ji Youn
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.427-434
    • /
    • 2017
  • Species that belong to the Acinetobacter calcoaceticus-baumannii (Acb) complex are major causes of hospital-acquired infections. They are important opportunistic pathogens. These species are usually multidrug resistant (MDR), and the therapeutic options to treat the infections caused by these species are limited. In the present study, we investigated fluoroquinolone resistance mechanisms in 53 ciprofloxacin resistant Acinetobacter species isolates in Chungcheong, Korea. Antimicrobial susceptibilities were determined using the disk-diffusion method. Detections of genes and identification of mutations associated with fluoroquinolone resistance were carried out using PCR and DNA sequencing. In our study, 47 out of 53 ciprofloxacin resistant Acinetobacter isolates harbored sense mutations at the 83rd residue (serine to leucine) in the gyrA gene as well as at the 80th residue (serine to leucine) in the parC gene. Among the 47 isolates harboring sense mutations in gyrA and parC gene, 44 isolates were A. baumannii and 3 isolates were A. pittii. Plasmid-mediated quinolone resistance (PMQR) determinants were detected in isolates in our study. Among the 46 ciprofloxacin resistant A. baumannii isolates, 41 showed type A, B, or F banding patterns on their REP-PCR profiles. This result suggests that clonal relation and horizontal spreading of the bacterial isolates have been around hospitals in Chungcheong area. To prevent colonization and disseminations of fluoroquinolone resistance Acb complex isolates, continuous investigation and monitoring of antimicrobial resistant determinants of MDR isolates are needed.

Mutations in the gyrB, parC, and parE Genes of Quinolone-Resistant Isolates and Mutants of Edwardsiella tarda

  • Kim, Myoung-Sug;Jun, Lyu-Jin;Shin, Soon-Bum;Park, Myoung-Ae;Jung, Sung-Hee;Kim, Kwang-Il;Moon, Kyung-Ho;Jeong, Hyun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1735-1743
    • /
    • 2010
  • The full-length genes gyrB (2,415 bp), parC (2,277 bp), and parE (1,896 bp) in Edwardsiella tarda were cloned by PCR with degenerate primers based on the sequence of the respective quinolone resistance-determining region (QRDR), followed by elongation of 5' and 3' ends using cassette ligation-mediated PCR (CLMP). Analysis of the cloned genes revealed open reading frames (ORFs) encoding proteins of 804 (GyrB), 758 (ParC), and 631 (ParE) amino acids with conserved gyrase/topoisomerase features and motifs important for enzymatic function. The ORFs were preceded by putative promoters, ribosome binding sites, and inverted repeats with the potential to form cruciform structures for binding of DNA-binding proteins. When comparing the deduced amino acid sequences of E. tarda GyrB, ParC, and ParE with those of the corresponding proteins in other bacteria, they were found to be most closely related to Escherichia coli GyrB (87.6% identity), Klebsiella pneumoniae ParC (78.8% identity), and Salmonella Typhimurium ParE (89.5% identity), respectively. The two topoisomerase genes, parC and parE, were found to be contiguous on the E. tarda chromosome. All 18 quinolone-resistant isolates obtained from Korea thus far did not contain subunit alternations apart from a substitution in GyrA (Ser83$\rightarrow$Arg). However, an alteration in the QRDR of ParC (Ser84$\rightarrow$Ile) following an amino acid substitution in GyrA (Asp87$\rightarrow$Gly) was detected in E. tarda mutants selected in vitro at $8{\mu}g/ml$ ciprofloxacin (CIP). A mutant with a GyrB (Ser464$\rightarrow$Leu) and GyrA (Asp87$\rightarrow$Gly) substitution did not show a significant increase in the minimum inhibitory concentration (MIC) of CIP. None of the in vitro mutants exhibited mutations in parE. Thus, gyrA and parC should be considered to be the primary and secondary targets, respectively, of quinolones in E. tarda.

Prevalence of plasmid-mediated quinolone and tetracycline resistance genes in Aeromonas strains isolated from eel (Anguilla japonica) and ornamental fish

  • Gee-Wook Shin;Jun-Hwan Park;Hui-Ju Kim
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.287-292
    • /
    • 2023
  • This study investigated the genetic determinants of plasmid-mediated antibiotic resistance (PMAR) to quinolones and tetracycline in 106 Aeromonas strains isolated from eel (Anguilla japonica, 70 strains) and ornamental fish (36 strains) in Korea. Quinolones and tetracycline resistance phenotypes were found to be widely distributed throughout the both fish groups. However, the prevalence of qnr and tet genes was higher in ornamental fish strains than in eel strains (42.9% vs. 86.1% for qnr and 51.4% vs. 69.4% for tet). In addition, the profiling of the present genetic determinants revealed the dominance of qnrS, tetA, tetE and tetE+qnrS genes for eel strains but of tetA+qnrS qnrS and tetE+qnrS genes for ornamental fish strains. These results indicate that aquaculture and related industries could be a major threat to public health due to the possible spread of PMAR.

Study on antimicrobial resistance of Escherichia coli isolated from domestic beef on sale (유통되는 쇠고기에서 분리한 대장균의 항생제 내성 조사.연구)

  • Kim, Hong-Tae;Lee, Woo-Won;Jung, Kyung-Tae;Lee, Seung-Mee;Son, Eun-Jung;Lee, Gang-Rok;Kim, Geum-Hyang;Lee, Dong-Soo;Lee, Keun-Woo
    • Korean Journal of Veterinary Service
    • /
    • v.31 no.1
    • /
    • pp.17-29
    • /
    • 2008
  • In this study, antimicrobial resistance of E coli isolated from domestic beef on sale in Busan and Gyeongnam province was investigated from March to October 2007. A total of 600 beef samples were collected for the monitoring of antimicrobial resistance, and 92 (15.3%) strains of E coli were isolated. Antimicrobial resistance test was carried out by agar disc diffusion method with 17 antimicrobials. In general, E coli isolates showed the highest antimicrobial resistance to doxycycline (73.9%), followed by tetracycline (70.7%) andcefazolin (63.0%). Then they showed higher resistance to several antimicrobials like norfloxacin (48.9%). However, They had low antimicrobial resistance to amikacin (4.3%), colistin (1.1%). Of 92 isolates, 82 (89.1%) were resistant to more than 2 antimicrobials. Among 17 antimicrobials examined, tetracyclines were the most resistant, followed by cephalosporins, quinolone. The resistance was seemed to be correlated to amounts of antimicrobial use. In the result of this study, we suggest that there be need to regulate the abuse of antimicrobial on food-producing animals in Korea because the concern on antimicrobial resistant is gradually increased worldwide.

Species Profiles and Antimicrobial Resistance of Non-aureus Staphylococci Isolated from Healthy Broilers, Farm Environments, and Farm Workers

  • Ji Heon Park;Gi Yong Lee;Ji Hyun Lim;Geun-Bae Kim;Kun Taek Park;Soo-Jin Yang
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.792-804
    • /
    • 2023
  • Non-aureus staphylococci (NAS), particularly antimicrobial-resistant NAS, have a substantial impact on human and animal health. In the current study, we investigated (1) the species profiles of NAS isolates collected from healthy broilers, farm environments, and farm workers in Korea, (2) the occurrence of antimicrobial-resistant NAS isolates, especially methicillin resistance, and (3) the genetic factors involved in the methicillin and fluoroquinolone resistance. In total, 216 NAS isolates of 16 different species were collected from healthy broilers (n=178), broiler farm environments (n=18), and farm workers (n=20) of 20 different broiler farms. The two most dominant broiler-associated NAS species were Staphylococcus agnetis (23.6%) and Staphylococcus xylosus (22.9%). Six NAS isolates were mecA-positive carrying staphylococcal cassette chromosome mec (SCCmec) II (n=1), SCCmec IV (n=1), SCCmec V (n=2), or nontypeable SCCmec element (n=2). While two mecA-positive Staphylococcus epidermidis isolates from farm workers had SCCmec II and IV, a mecA-positive S. epidermidis isolate from broiler and a Staphylococcus haemolyticus isolate farm environment carried SCCmec V. The occurrence of multidrug resistance was observed in 48.1% (104/216 isolates) of NAS isolates with high resistance rates to β-lactams (>40%) and fusidic acid (59.7%). Fluoroquinolone resistance was confirmed in 59 NAS isolates (27.3%), and diverse mutations in the quinolone resistance determining regions of gyrA, gyrB, parC, and parE were identified. These findings suggest that NAS in broiler farms may have a potential role in the acquisition, amplification, and transmission of antimicrobial resistance.

CTX-M-14 Producing Enterobacteriaceae Isolated from Chickens at Gyeongsang Provinces (경북지역의 닭으로부터 CTX-M-14 생성 장내세균 분리동정)

  • Sung, Ji Youn;Kwon, Taek Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.118-123
    • /
    • 2016
  • Antimicrobial agents have been used in poultry for treatment of bacterial infections or additives over the past half century. However, increasing antimicrobial resistance has led to selective pressure for therapeutic use in humans and made treatment of bacterial infection more difficult. In this study, we examined the prevalence of plasmid mediated antimicrobial resistant determinants for resistance to ${\beta}-lactam$, quinolone, and aminoglycoside in Enterobacteriaceae isolates obtained from chickens in Gyeongsang provinces, and correlation between the resistant genes and antimicrobial resistance rate was also assessed. A total of 43 Enterobacteriaceae isolates were recovered from 40 chickens at Gyeongsang provinces in Korea. Antimicrobial susceptibility was determined by disk diffusion method. PCR and DNA sequencing were performed to characterize the antimicrobial resistant genes. Of the 43 Enterobacteriaceae isolates tested, 2 isolates harbored $bla_{CTX-M-14}$ gene, and 2 and 5 strains contained qnrS and aac(6')-Ib-cr genes, respectively. A total of 43 isolates displayed a relatively lower susceptible rate ranging between 0.0 and 23.3% to most of the antimicrobial agents, except cefepime, ceftazidime, and cefaclor. We confirmed that plasmid mediated antimicrobial resistant determinants were distributed in Enterobacteriaceae isolates from chickens. Investigation of the genes and monitoring of antimicrobial resistance rate is required to prevent further spreading of antimicrobial resistant genes among Enterobacteriaceae isolates.

Prevalence of Multi-drug Resistant Acinetobacter baumannii Producing OXA-23-like from a University Hospital in Gangwon Province, Korea

  • Jang, In-Ho;Lee, Gyu-Sang;Choi, Il;Uh, Young;Kim, Sa-Hyun;Park, Min;Woo, Hyun-Jun;Choi, Yeon-Im;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.79-82
    • /
    • 2012
  • Acinetobacter infections are of great concern in clinical settings because of multi-drug resistance (MDR) and high mortality of the infected patients. The MDR Acinetobacter baumannii has emerged as a significant infectious agent in hospitals worldwide. The purpose of this study was to determine for molecular characterization of MDR A. baumannii clinical isolates obtained from the Wonju Christian Hospital in Gangwon province of Korea. A total of seventy nonduplicate A. baumannii isolates were collected from the Wonju Christian Hospital in Korea from March to April in 2011. All of the MDR A. baumannii isolates were encoded by $bla_{OXA-23-like}$ gene and all isolates with the $bla_{OXA-23-like}$ gene had the upstream element ISAba1 to promote increased gene expression and subsequent resistance to carbapenem. 16S rRNA methylase gene (armA) was detected in 44 clinical isolates which were resistant to amikacin, and phosphotransferase genes encoding aac(3)-Ia and aac(6')-Ib were the most prevalent. A combination of 16S rRNA methylase and aminoglycoside-modifying enzyme genes (armA, aac(3)-Ia, aac(6')-Ib, and aph(3')-Ia) were found in 31 isolates. The sequencing results for the quinolone resistance-determining region (QRDR) of gyrA and parC revealed the presence of Ser (TCA) 83 Leu (TTA) and Ser (TCG) 80 Leu (TTG) substitutions in the respective enzymes for all MDR. Molecular typing for MDR A. baumannii could be helpful in confirming the identification of a common source or cross-contamination. This is an important step in enabling epidemiological tracing of these strains.