• Title/Summary/Keyword: Quick Scheme

Search Result 135, Processing Time 0.024 seconds

Spray Combustion Analysis for Unsteady State in Combustion Chamber of Liquid Rocket Engine Considering Droplet Fluctuation (액적변동을 고려한 액체로켓의 연소실 내 비정상 분무연소 해석)

  • Jeong, Dae-Kwon;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.175-178
    • /
    • 2006
  • A numerical study for spray combustion of fluctuated fuel and oxidizer droplets injected into combustion chamber has been conducted for the analysis of spray combustion considering characteristics of injector. The 2 dimensional unsteady state flow fields have been calculated by using QUICK Scheme and SIMPLER Algorithm. As the spray model, DSF model and Euler-Lagrange Scheme have been used. The sine Auction has been used for droplet fluctuation model of fuel and oxidizer, while the coupling effects of the droplets between gas phase and evaporated vapor have been calculated by using PSIC model.

  • PDF

Development of a High Accuracy Pure Upwind Difference Scheme (고차 정확도의 순수 상류 차분법의 개발)

  • Cho Ji Ryong
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.8-18
    • /
    • 1999
  • In devising a numerical approximation for the convective spatial transport of a fluid mechanical quantity, it is noted that the convective motion of a scalar quantity occurs in one-way, or from upstream to downstream. This consideration leads to a new scheme termed a pure upwind difference scheme (PUDS) in which an estimated value for a fluid mechanical quantity at a control surface is not influenced from downstream values. The formal accuracy of the proposed scheme is third order accurate. Two typical benchmark problems of a wall-driven fluid flow in a square cavity and a buoyancy-driven natural convection in a tall cavity are computed to evaluate performance of the proposed method. for comparison, the widely used simple upwind scheme, power-law scheme, and QUICK methods are also considered. Computation results are encouraging: the proposed PUDS sensitized to the convection direction produces the least numerical diffusion among tested convection schemes, and, notable improvements in representing recirculation of fluid stream and spatial change of a scalar. Although the formal accuracy of PUDS and QUICK are the same, the accuracy difference of approximately a single order is observed from the revealed results.

  • PDF

Analysis of Three-Dimensional Mixed Convection Flow About Uniformly Distributed Heat-Generating Blocks on a Conductive Wall (기판 위에 분포된 발열블록 주위의 3차원 혼합대류 열전달 해석)

  • Yun, Byeong-Taek;Choi, Do Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • The three-dimensional laminar mixed convection flow between the conductive printed circuit boards. on which the heat generating rectangular blocks are uniformly distributed, has been examined in the present study. The flow and heat-transfer characteristics are assumed to be pseudo periodic in the streamwise direction and symmetric in the cross-stream direction. Using an algorithm of SIMPLER, the continuity equation. the Navier-Stokes equations and the energy equation are solved numerically in the three-dimensional domain Inside the channel. The convective derivative terms are discretized by the QUICK scheme to accurately capture the flow field. The flow and the heat transfer characteristics are thoroughly examined for various Re and Gr.

Simulation of Three-Dimensional Turbulent Flows around an Ahmed Body-Evaluation of Finite Differencing Schemes- (Ahmed body 주위의 3차원 난류유동 해석-유한차분도식의 평가-)

  • Myeong, Hyeon-Guk;Park, Hui-Gyeong;Jin, Eun-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3589-3597
    • /
    • 1996
  • The Reynolds-averaged Navier-Stokes equations with the equations of the k-.epsilon. turbulence model are solved numerically in a general curvilinear system for a three-dimensional turbulent flow around an Ahmed body. The simulation is especially aimed at the evaluation of three finite differencing schemes for the convection term, which include the upwind differencing scheme(UDS), the second order upwind differencing scheme(SOU scheme) and the QUICK scheme. The drag coefficient, the velocity and pressure fields are found to be changed considerably with the adopted finite differencing schemes. It is clearly demonstrated that the large difference between computation and experiment in the drag coefficient is due to relatively high predicted values of pressure drag from both front part and vertical rear end base. The results also show that the simulation with the QUICK or SOU scheme predicts fairly well the flow field and gives more accurate drag coefficient than other finite differencing scheme.

Quick Semi-Buddy Scheme for Dynamic Storage Allocation in Real-Time Systems (실시간 시스템에서의 동적 스토리지 할당을 위한 빠른 수정 이진 버디 기법)

  • 이영재;추현승;윤희용
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.23-34
    • /
    • 2002
  • Dynamic storage allocation (DSA) is a field fairly well studied for a long time as a basic problem of system software area. Due to memory fragmentation problem of DSA and its unpredictable worst case execution time, real-time system designers have believed that DSA may not be promising for real-time application service. Recently, the need for an efficient DSA algorithm is widely discussed and the algorithm is considered to be very important in the real-time system. This paper proposes an efficient DSA algorithm called QSB (quick semi-buddy) which is designed to be suitable for real-time environment. QSB scheme effectively maintains free lists based on quick-fit approach to quickly accommodate small and frequent memory requests, and the other free lists devised with adaptation upon a typical binary buddy mechanism for bigger requests in harmony for the .improved performance. Comprehensive simulation results show that the proposed scheme outperforms QHF which is known to be effective in terms of memory fragmentation up to about 16%. Furthermore, the memory allocation failure ratio is significantly decreased and the worst case execution time is predictable.

  • PDF

Calculations of Incompressible Flows In General Nonorthogonal Body Fitted Coordinates: Comparison of Hybrid and QUICK Sehemes (일반 비직교 표면좌표계에서의 비압축성 점성유동의 수치해석)

  • Gang, Dong-Jin;Bae, Sang-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1613-1623
    • /
    • 1996
  • In this paper, two discretization methods, hybrid and QUICK, are tested for the Navier-Stokes equations written in general nonorthogonal body fitted coordinates. Comparison is made by calculating two laminar flows at low Reynolds numbers of 10 - 100. One is a two-dimensional channel of gradually expanding cross section and the other is an axisymmetric flow through a circular tube having a circular constriction. Results show that the QUICK scheme results in a numerical solution more accurate than that of hybrid. The QUICK scheme also shows faster convergence for both test cases. As the number of grid points increases, all numerical solutions converge with more oscillation. The number of grid points in the y-direction(cross stream direction) is also shown to play a significant role in the approximation of convection term within separated flow zone.

Numerical Calculations of Compressible Flows using a SIMPLE Algorithm (Simple 알고리즘을 이용한 압축성유동해석)

  • Ahn Hee-Sub;Sohn Chnng-Hyun;Moon Su-Yeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.184-190
    • /
    • 2000
  • A well-known pressure correction method, a SIMPLE algorithm is extended to treat compressible flows. Collocated grids are used and density is linked to pressure via an equation of state. The influence of pressure on density in the case of compressible flows is implicitly incorporated into the extended SIMPLE algorithm. The first-order Upwind and high-order Quick scheme are compared with respect to an accuracy and convergence time at all speeds. The extended method is verified on a number of test cases and the results we compared with other numerical results available in the literature. The calculated results show that the Quick scheme improves accuracy at all speed and also reduces the calculation time at supersonic flows, compared with the Upwind scheme.

  • PDF

Numerical Calculations of Compressible Flows using a SIMPLE Algorithm (SIMPLE 알고리즘을 이용한 압축성유동해석)

  • Ahn Hee-Sub;Sohn Chang-Hyun;Moon Su-Yeon
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • A well-known pressure correction method, a SIMPLE algorithm, is extended to treat compressible flows. Collocated grids are used and density is linked to pressure via an equation of state. The influence of pressure on density in the case of compressible flows is implicitly incorporated into the extended SIMPLE algorithm. The first-order Upwind and high-order Quick scheme are compared with respect to an accuracy and convergence time at all speeds. The extended method is verified on a number of test cases and the results are compared with other numerical results available in the literature. The calculated results show that the Quick scheme improves accuracy at all speed and also reduces the calculation time at supersonic flows, compared with the Upwind scheme.

  • PDF

An Efficient Complex Event Processing Algorithm based on Multipattern Sharing for Massive Manufacturing Event Streams

  • Wang, Jianhua;Lan, Yubin;Lu, Shilei;Cheng, Lianglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1385-1402
    • /
    • 2019
  • Quickly picking up some valuable information from massive manufacturing event stream usually faces with the problem of long detection time, high memory consumption and low detection efficiency due to its stream characteristics of large volume, high velocity, many variety and small value. Aiming to solve the problem above for the current complex event processing methods because of not sharing detection during the detecting process for massive manufacturing event streams, an efficient complex event processing method based on multipattern sharing is presented in this paper. The achievement of this paper lies that a multipattern sharing technology is successfully used to realize the quick detection of complex event for massive manufacturing event streams. Specially, in our scheme, we firstly use pattern sharing technology to merge all the same prefix, suffix, or subpattern that existed in single pattern complex event detection models into a multiple pattern complex event detection model, then we use the new detection model to realize the quick detection for complex events from massive manufacturing event streams, as a result, our scheme can effectively solve the problems above by reducing lots of redundant building, storing, searching and calculating operations with pattern sharing technology. At the end of this paper, we use some simulation experiments to prove that our proposed multiple pattern processing scheme outperforms some general processing methods in current as a whole.

Numerical Analysis of Fully Developed Turbulent Recirculating Flow and Heat Transfer for The Periodic Variations of Cross Sectional Area (周期的으로 斷面이 變化하는 完全確立된 亂流再循環 流動과 亂流熱傳達의 數値分析)

  • 이병곤;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.138-149
    • /
    • 1986
  • A numerical method is developed for the solution of fully developed turbulent recirculating flow whose cross-sectional area varies periodically. This enalbes the flow field analysis to be confined to a single isolated module, without involvement with the entrance region problem. This method are applied to the analysis of the turbulent flow field and heat transfer in artificially roughened annulus with repeated square rib.