• Title/Summary/Keyword: Queueing delay time

Search Result 96, Processing Time 0.027 seconds

A Simulation Study on Queueing Delay Performance of Slotted ALOHA under Time-Correlated Channels

  • Yoora Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.43-51
    • /
    • 2023
  • Slotted ALOHA (S-ALOHA) is a classical medium access control protocol widely used in multiple access communication networks, supporting distributed random access without the need for a central controller. Although stability and delay have been extensively studied in existing works, most of these studies have assumed ideal channel conditions or independent fading, and the impact of time-correlated wireless channels has been less addressed. In this paper, we investigate the queueing delay performance in S-ALOHA networks under time-correlated channel conditions by utilizing a Gilbert-Elliott model. Through simulation studies, we demonstrate how temporal correlation in the wireless channel affects the queueing delay performance. We find that stronger temporal correlation leads to increased variability in queue length, a larger probability of having queue overflows, and higher congestion levels in the S-ALOHA network. Consequently, there is an increase in the average queueing delay, even under a light traffic load. With these findings, we provide valuable insights into the queueing delay performance of S-ALOHA networks, supplementing the existing understanding of delay in S-ALOHA networks.

A Delay and Sensitivity of Delay Analysis for Varying Start of Green Time at Signalized Intersections: Focused on through traffic (신호교차로의 출발녹색시간 변화에 따른 직진교통류의 지체 및 지체민감도 분식)

  • Ahn, Woo-Young
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.21-32
    • /
    • 2007
  • The linear traffic model(Vertical queueing model) that is adopted widely in traffic flow estimation assumes that all vehicles have the identical motion before joining a queue at the stop-line. Thus, a queue is supposed to form vertically not horizontally. Due to the simplicity of this model, the departure time of the leading vehicle is assumed to coincide with the start of effective green time. Thus, the delay estimates given by the Vertical queueing model is not always realistic. This paper explores a microscopic traffic model(a Kinematic Car-following model at Signalised intersections: a KCS traffic model) based on the one dimensional Kinematic equations in physics. A comparative evaluation in delay and sensitivity of delay difference between the KCS traffic model and the previously known Vertical queueing model is presented. The results show that the delay estimate in the Vertical queueing model is always greater than or equal to the KCS traffic model; however, the sensitivity of delay in the KCS traffic model is greater than the Vertical queueing model.

  • PDF

Development of a Signal Optimization Algorithm at Isolated Intersections Using Vehicle Arrival Models (차량의 도착모형을 이용한 독립교차로 신호최적화알고리즘 개발)

  • Woo, Yong-Han
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.41-49
    • /
    • 2001
  • This study developed signal optimization algorithm by analyzing vehicle arrival patterns. The major principle of signal optimization is dissipate all queueing vehicle in 1cycle and assign delay time uniformly for all approaches. For this, this study used optimal green time and surplus green time. Optimal green time calculated by estimated traffic volume from vehicle arrival model. Surplus green time defined as the gap of optimal green time and queue dissipated time. And alternative cycle has minimum surplus green time was selected as the optimal cycle. Finally, total delay and average delay per vehicle can be calculated by using queueing theory.

  • PDF

Performance Relation Analysis of CLR, Buffer Capacity and Delay Time in the ATM Access Node (ATM 접속노드에서 셀 손실율과 버퍼용량 및 지연시간의 상관관계 분석)

  • 이하철;이병섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.945-950
    • /
    • 2002
  • In this paper the performance evaluations on Asynchronous Transfer Mode(ATM) access node are performed in the ATM access network which consists of access node and channel. The performance factors of access node are Cell Loss Ratio(CLR), buffer capacity and delay time. Both the ATM cell-scale queueing model and burst-scale queueing model are considered as the traffic model of access node for various traffic types such as Constant Bit Rate(CBR), Variable Bit Rate(VBR) and random traffic in the ATM access networks. Based on these situations, the relation of CLR, buffer capacity and delay time is analyzed in the ATM access node.

Flow-Based WTP Scheduler for Proportional Differentiated Services in Wireless Communication Systems (무선통신 시스템에서의 비례지연서비스를 위한 플로우 기반 WTP 스케쥴러)

  • Park Hyosoon;Kwon Eunhyun;Kim Taehyoun;Lee Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7B
    • /
    • pp.433-439
    • /
    • 2005
  • In this paper, we propose a Flow Based Waiting Time Priority (FB-WTP) scheduler that supports the proportional delay differentiated services between classes. Existing scheduling algorithms utilize the configuration of scheduler, which is operated as class unit, applied to wired network. However, FB-WTP scheduler is operated as flow unit and can take advantage of multi-flow diversity effect in time-varying channel state environment. As a result, FB-WTP improves the average queueing delay on each class as well as supporting the average queueing delay ratio between classes. It also solves the HOL packet blocking problem implicitly. Simulation results show that FB-WTP scheduler has better system queueing delay performance than Look-ahead Waiting Time Priority (LWTP) scheduler and supports the larger queueing delay ratio between classes that network operator set.

Method for Reduction of Power Consumption using Buffer Processing Time Control in Home Gateway (홈 게이트웨이에서 서비스 특성에 따른 버퍼 동작 시간 제어를 통한 전력 소비 감소 방안)

  • Yang, Hyeon;Yu, Gil-Sang;Kim, Yong-Woon;Choi, Seong-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.69-76
    • /
    • 2012
  • This paper proposes an efficient power consumption scheme using sleep mode in home gateway. The scheme by this paper classifies incoming real time packet and non-real time packet in home gateway and delay non-real time packet. Therefore, the home gateway can have longer sleep time because non-real time packet can get additional delay time by proposing mechanism using timer. We use non-preemptive two priority queueing model for performance analysis. As a results, we verify that power consumption of proposed scheme is reduced more than existing scheme by delay of non-real time traffic.

Efficient Packet Scheduling Algorithm using Virtual Start Time for High-Speed Packet Networks (고속 패킷망에서 효율적인 가상 시작 시간 기반 패킷 스케줄링 알고리즘)

  • Ko, Nam-Seok;Gwak, Dong-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3B
    • /
    • pp.171-182
    • /
    • 2003
  • In this paper, we propose an efficient and simple fair queueing algorithm, called Minimum Possible Virtual Start Time Fair Queueing (MPSFQ), which has O(1) complexity for the virtual time computation while it has good delay and fairness properties. The key idea of MPSFQ is that it has an easy system virtual time recalibration method while it follows a rate-proportional property. MPSFQ algorithm recalibrates system virtual time to the minimum possible virtual start time of all backlogged sessions. We will show our algorithm has good delay and fairness properties by analysis.

Analysis of Delay Distribution and Rate Control over Burst-Error Wireless Channels

  • Lee, Joon-Goo;Lee, Hyung-Keuk;Lee, Sang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.355-362
    • /
    • 2009
  • In real-time communication services, delay constraints are among the most important QoS (Quality of Service) factors. In particular, it is difficult to guarantee the delay requirement over wireless channels, since they exhibit dynamic time-varying behavior and even severe burst-errors during periods of deep fading. Channel throughput may be increased, but at the cost of the additional delays when ARQ (Automatic Repeat Request) schemes are used. For real-time communication services, it is very essential to predict data deliverability. This paper derives the delay distribution and the successful delivery probability within a given delay budget using a priori channel model and a posteriori information from the perspective of queueing theory. The Gilbert-Elliot burst-noise channel is employed as an a Priori channel model, where a two-state Markov-modulated Bernoulli process $(MMBP_2)$ is used. for a posteriori information, the channel parameters, the queue-length and the initial channel state are assumed to be given. The numerical derivation is verified and analyzed via Monte Carlo simulations. This numerical derivation is then applied to a rate control scheme for real-time video transmission, where an optimal encoding rate is determined based on the future channel capacity and the distortion of the reconstructed pictures.

QUEUEING ANALYSIS OF GATED-EXHAUSTIVE VACATION SYSTEM FOR DBA SCHEME IN AN EPON

  • HAN DONG HWAN;PARK CHUL GEUN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.547-557
    • /
    • 2005
  • In this paper, we investigate the packet delay distribution of a dynamic bandwidth allocation(DBA) scheme in an Ethernet passive optical network(EPON). We focus on the gated-exhaustive vacation system. We assume that input packets arrive at an optical network unit(ONU) according to general interarrival distribution. We use a discrete time queueing model in order to find the packet delay distribution of the gated-exhaustive system with the primary transmission queue and the secondary input queue. We give some numerical examples to investigate the mean packet delays of the proposed queueing model to analyze the DBA scheme in an EPON.

Analysis of a Wireless Transmitter Model Considering Retransmission for Real Time Traffic (재전송을 고려한 무선 전송 단에서 실시간 데이터 전송 모델의 분석)

  • Kim, Tae-Yong;Kim, Young-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.215-217
    • /
    • 2005
  • There are two types of packet loss probabilities used in both the network layer and the physical layer within the wireless transmitter such as a queueing discard probability and transmission loss probability. We analyze these loss performances in order to guarantee Quality of Service (QoS) which is the basic of the future network. The queuing loss probability is caused by a maximum allowable delay time and the transmission loss probability is caused by a wireless channel error. These two types of packet loss probabilities are not easily analyzed due to recursive feedback which, originates as a result at a queueing delay and a number of retransmission attempts. We consider a wireless transmitter to a M/D/1 queueing model. We configurate the model to have a finite-size FIFO buffer in order to analyze the real-time traffic streams. Then we present the approaches used for evaluating the loss probabilities of this M/D/1/K queueing model. To analyze the two types of probabilities which have mutual feedbacks with each other, we drive the solutions recursively. The validity and accuracy of the analysis are confirmed by the computer simulation. From the following solutions, we suggest a minimum of 'a Maximum Allowable Delay Time' for real-time traffic in order to initially guarantee the QoS. Finally, we analyze the required service rate for each type utilizing real-time traffic and we apply our valuable analysis to a N-user's wireless network in order to get the fundamental information (types of supportable real-type traffics, types of supportable QoS, supportable maximum number of users) for network design.

  • PDF