• Title/Summary/Keyword: Queue Waiting Time

Search Result 147, Processing Time 0.026 seconds

WAITING TIME DISTRIBUTION IN THE M/M/M RETRIAL QUEUE

  • Kim, Jeongsim;Kim, Jerim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1659-1671
    • /
    • 2013
  • In this paper, we are concerned with the analysis of the waiting time distribution in the M/M/m retrial queue. We give expressions for the Laplace-Stieltjes transform (LST) of the waiting time distribution and then provide a numerical algorithm for calculating the LST of the waiting time distribution. Numerical inversion of the LSTs is used to calculate the waiting time distribution. Numerical results are presented to illustrate our results.

Analysis of Unfinished Work and Queue Waiting Time for the M/G/1 Queue with D-policy

  • Park, Yon-Il;Chae, Kyung-Chul
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.4
    • /
    • pp.523-533
    • /
    • 1999
  • We consider the M/G/1 queueing model with D-policy. The server is turned off at the end of each busy period and is activated again only when the sum of the service times of all waiting customers exceeds a fixed value D. We obtain the distribution of unfinished work and show that the unfinished work decomposes into two random variables, one of which is the unfinished work of ordinary M/G/1 queue. We also derive the distribution of queue waiting time.

  • PDF

The Analysis of the M/M/1 Queue with Impatient Customers

  • Lee, EuiYong;Lim, Kyung Eun
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.489-497
    • /
    • 2000
  • The M/M/1 queue with impatient customers is studied. Impatient customers wait for service only for limited time K/0 and leave the system if their services do not start during that time. Notice that in the analysis of virtual waiting time, the impatient customer can be considered as the customer who enters the system only when his/her waiting time does not exceed K. In this paper, we apply martingale methods to the virtual waiting time and obtain the expected period from origin to the point where the virtual waiting time crosses over K or reaches 0, and the variance of this period. With this results, we obtain the expected busy period of the queue, the distribution, expectation and variance of the number of times the virtual waiting time exceeding level K during a busy period, and the probability of there being no impatient customers in a busy period.

  • PDF

A Heuristic Derivation of the Waiting Time Distribution of a GI/G/1 Queue (GI/G/1 대기행렬 대기시간 분포의 새로운 유도방법)

  • Lim, Dae Eun;Kim, Bokeun;Kim, Nam K.;Chae, Kyung C.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • This paper presents a heuristic approach to derive the Laplace-Stieltjes transform (LST) and the probability generating function (PGF) of the waiting time distributions of a continuous- and a discrete-time GI/G/1 queue, respectively. This is a new idea to derive the well-known results, the waiting time distribution of GI/G/1 queue, in a different way.

TWO-CLASS M/PH,G/1 QUEUE WITH IMPATIENCE OF HIGH-PRIORITY CUSTOMERS

  • Kim, Jeongsim
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.749-757
    • /
    • 2012
  • We consider the M/PH,G/1 queue with two classes of customers in which class-1 customers have deterministic impatience time and have preemptive priority over class-2 customers who are assumed to be infinitely patient. The service times of class-1 and class-2 customers have a phase-type distribution and a general distribution, respectively. We obtain performance measures of class-2 customers such as the queue length distribution, the waiting time distribution and the sojourn time distribution, by analyzing the busy period of class-1 customers. We also compute the moments of the queue length and the waiting and sojourn times.

The Virtual Waiting Time of the M/G/1 Queue with Customers of n Types of Impatience

  • Bae Jongho
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.289-294
    • /
    • 2004
  • We consider M/G/1 queue in which the customers are classified into n+1 classes by their impatience time. First, we analyze the model of two types of customers; one is the customer with constant impatience duration k and the other is patient customer. The expected busy period of the server and the limiting distribution of the virtual waiting time process are obtained. Then, the model is generalized to the one in which there are classes of customers according to their impatience duration.

  • PDF

Optimization of theM/M/1 Queue with Impatient Customers

  • Lee, Eui-Yong;Lim, Kyung-Eun
    • International Journal of Reliability and Applications
    • /
    • v.3 no.4
    • /
    • pp.165-171
    • /
    • 2002
  • An optimization of the M/M/1 queue with impatient customers is studied. The impatient customer does not enter the system if his or her virtual waiting time exceeds the threshold K > 0. After assigning three costs to the system, a cost proportional to the virtual waiting time, a penalty to each impatient customer, and also a penalty to each unit of the idle period of the server, we show that there exists a threshold K which minimizes the long-run average cost per unit time.

  • PDF

On the Discrete-Time Version of the Distributional Little's Law (이산시간 대기행렬시스템에 대한 분포적 Little의 법칙의 활용)

  • Kim, Nam-Ki;Chae, Kyung-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.4
    • /
    • pp.374-378
    • /
    • 2001
  • We present a discrete-time version of the distributional Little's law, of which the continuous-time version is well known. Then we extend it to the queue in which two or more customers may depart at the same time. As a demonstration, we apply this law to various discrete-time queues such as the standard Geom/G/1 queue, the Geom/G/1 queue with vacations, the multi-server Geom/D/c queue, and the bulk-service Geom/$G^b$/1 queue. As a result, we obtain the probability generating functions of the numbers in system/queue and the waiting times in system/queue for those queues.

  • PDF

A RECENT PROGRESS IN ALGORITHMIC ANALYSIS OF FIFO QUEUES WITH MARKOVIAN ARRIVAL STEAMS

  • Takine, Tetsuya
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.807-842
    • /
    • 2001
  • This paper summarizes recent development of analytical and algorithmical results for stationary FIFO queues with multiple Markovian arrival streams, where service time distributions are general and they may differ for different arrival streams. While this kind of queues naturally arises in considering queues with a superposition of independent phase-type arrivals, the conventional approach based on the queue length dynamics (i.e., M/G/1 pradigm) is not applicable to this kind of queues. On the contrary, the workload process has a Markovian property, so that it is analytically tractable. This paper first reviews the results for the stationary distributions of the amount of work-in-system, actual waiting time and sojourn time, all of which were obtained in the last six years by the author. Further this paper shows an alternative approach, recently developed by the author, to analyze the joint queue length distribution based on the waiting time distribution. An emphasis is placed on how to construct a numerically feasible recursion to compute the stationary queue length mass function.

  • PDF

SOME WAITING TIME ANALYSIS FOR CERTAIN QUEUEING POLICIES

  • Lim, Jong-Seul
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.469-474
    • /
    • 2011
  • In a M/G/I queue where the server alternates between busy and idle periods, we assume that firstly customers arrive at the system according to a Poisson process and the arrival process and customer service times are mutually independent, secondly the system has infinite waiting room, thirdly the server utilization is less than 1 and the system has reached a steady state. With these assumptions, we analyze waiting times on the systems where some vacation policies are considered.