• 제목/요약/키워드: Question and answer documents

검색결과 37건 처리시간 0.031초

질의응답시스템에서 정답 특징에 관한 실험적 분석 (Experimental Analysis of Correct Answer Characteristics in Question Answering Systems)

  • 한경수
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권5호
    • /
    • pp.927-933
    • /
    • 2018
  • 자연어 질문에 대해 답변을 찾아 제공하는 질의응답시스템의 오류에 가장 큰 영향을 미치는 요소 중 하나가 질문으로 정답을 포함하고 있을 만한 문서나 단락을 검색하는 단계이다. 검색의 성능 향상을 위해서는 정답 포함 문서 및 단락의 특징을 잘 이해해야 한다. 본 논문은 질문, 정답 포함 문서, 정답 미포함 문서로 구성된 말뭉치를 사용하여 정답 문서에는 질문 단어가 얼마나 많이 출현하는지, 출현 위치는 어떻게 분포하는지, 질문과 정답 문서의 주제는 얼마나 유사한지 등을 실험적으로 분석한다. 이를 통해 질의응답시스템을 위한 기존의 검색 연구 결과들에 대한 원인을 설명하고 효과적인 검색 단계의 필요 요소에 관해 논의한다.

의학문서 질의응답을 위한 정답 스닛핏 검색 (Answer Snippet Retrieval for Question Answering of Medical Documents)

  • 이현구;김민경;김학수
    • 정보과학회 논문지
    • /
    • 제43권8호
    • /
    • pp.927-932
    • /
    • 2016
  • 온라인 의학 문서의 폭발적 증가와 함께 질의응답 시스템에 대한 필요성이 늘어나고 있다. 최근에는 기계학습에 기반 한 질의응답 모델들이 다양한 영역에서 좋은 결과를 보여 왔다. 그러나 의학 영역에서 질의응답 모델들은 학습 데이터의 부족으로 인해 여전히 정보 검색 기술에 기반을 두고 있다. 본 논문에서는 다양한 정보검색 기술에 기반 한 의학문서 질의응답용 정답 스닛핏 검색 모델을 제안한다. 제안 모델은 먼저 클러스터 기반 검색 기술을 이용하여 의학 문서로부터 많은 정답 후보 문장을 검색한다. 그리고 다양한 문장 검색 기술들에 기반 한 정답 후보 문장 재순위화 모델을 사용하여 신뢰성 있는 정답 스닛핏을 생성한다. BioASQ 4b 데이터를 이용한 실험에서 제안 모델은 기존 모델보다 좋은 성능(MAP 0.0604)을 보였다.

지식 검색 서비스 개선을 위한 문서의 적합도 및 신뢰도 분석 (Evaluation of the documents from the Web-based Question and Answer Service)

  • 박소연;이준호;전지운
    • 한국문헌정보학회지
    • /
    • 제40권2호
    • /
    • pp.299-314
    • /
    • 2006
  • 지식 검색 서비스가 국내 포탈들의 대표적인 서비스로 정착되었음에도 불구하고, 지금까지 지식 검색 서비스의 질적 향상을 위한 연구나 지식 검색 데이터베이스의 문서 평가에 대한 연구는 미흡한 실정이다. 이에 본 연구에서는 지식 검색 데이터베이스를 구성하는 지식 문서의 평가 기준을 제시하였다. 구체적으로 본 연구에서는 지식 문서를 구성하는 질문 제목, 질문 전체, 답변의 적합도 평가 기준을 제안하고, 답변의 신뢰도 평가 기준도 제시하였다. 이러한 평가 기준에 근거하여 본 연구에서는 지식 문서의 실제 평가를 수행하였다. 본 연구의 결과는 지식 검색 테스트 컬렉션 구축과 신뢰도 컬렉션 구축에 활용되어 궁극적으로 지식 검색 서비스 개선에 기여할 것으로 기대된다.

질의응답문서 검색에서 문서구조를 이용한 질의재생성에 관한 연구 (Query Reconstruction for Searching QA Documents by Utilizing Structural Components)

  • 최상희;서은경
    • 정보관리학회지
    • /
    • 제23권2호
    • /
    • pp.229-243
    • /
    • 2006
  • 질의응답문서는 이용자가 입력한 질의, 질의설명, 답을 아는 다른 이용자가 제시한 응답으로 구성된 구조화된 문서로서, 최근 웹 문서처럼 검색이 일반적으로 일어나고 있는 정보원이다. 이 연구에서는 질의응답문서의 구조적 특성을 기반으로 질의를 재생성하여 질의응답문서의 검색효율을 향상시키고자 하였다. 질의재생성 실험에서 성능이 비교된 문서구조는 질의와 응답내용이다. 질의를 기반으로 질의를 재생성하는 방식에서는 질의응답검색 시스템에 입력되어 있는 유사질의를 활용하여 클러스터링하는 기법이 적용되었다. 응답정보를 기반으로 질의를 재생성하는 방식에서는 가장 유사한 기존 질의에 대해 응답된 내용에서 단락검색으로 적합한 문장들을 선정하여 활용하는 기법이 적용되었다. 실험 결과 응답정보를 활용하여 질의를 재생성하는 방식이 정확률은 유지하면서 더 다양한 검색결과를 제공하는 것으로 나타났다.

개념 기반 질의-응답 시스템에서의 정답 추출 (Answer Extraction of Concept based Question-Answering System)

  • 안영민;오수현;강유환;서영훈
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2005년도 춘계 종합학술대회 논문집
    • /
    • pp.448-451
    • /
    • 2005
  • 본 논문에서는 개념 기반 질의-응답 시스템에서의 정답 추출 방법에 대하여 기술한다. 개념 기반 질의-응답 시스템은 개념 정보를 이용하여 해답을 추출하는 시스템을 말하며, 질의분석을 통해 분류되고 추출된 개념 그에 따른 정답 추출 규칙을 이용하여 정답을 추출하는 방법과 시스템에 대하여 연구하였다. 질의에 대한 정답이 들어 있는 문서들을 분석하여 정답 추출 규칙을 작성한다. 규칙은 개념과 구문정보를 포함하고 있으며 작성된 규칙을 통하여 문서로부터 정답후보를 생성하고 정답을 선택한다.

  • PDF

정확한 해답 추출을 위한 개념 기반의 질의 분석 (Concept-based Question Analysis for Accurate Answer Extraction)

  • 신승은;강유환;안영민;박희근;서영훈
    • 한국콘텐츠학회논문지
    • /
    • 제7권1호
    • /
    • pp.10-20
    • /
    • 2007
  • 본 논문에서는 정확한 해답 추출을 위해 키워드보다 중요한 역할을 하는 개념을 분석하는 개념 기반 질의 분석에 대해 기술한다 해답 유형이 같은 질의들에서 나타나는 개념은 유사하기 때문에 이러한 개념들을 잘 정의하여 이용할 경우, 해답을 포함하는 다양한 형태의 구문으로부터 보다 정확한 해답을 추출할 수 있다는 것이 본 논문의 주요 아이디어이다. 즉, 해답을 포함하는 문서와 그 문서 내에 있는 해답을 좀더 정확하게 추출하기 위해 질문에 있는 각 단어나 구절들의 구문 및 의미 역할을 파악하고자 하는 것이다. 이를 위해, 정답 유형별로 그 유형의 질문에서 공통으로 나타나는 주요 개념들로 구성된 개념 프레임을 정의하고, 사용자 질의를 분석하여 개념 프레임을 채우는 과정으로 질의 분석을 수행한다. 실험 결과 본 논문에서 제안한 개념 기반 방식이 기존의 질의분석 기법에 비해 높은 정답 추출 성능을 보여주었다. 본 논문에서 제안한 개념 기반 접근 방법은 언어에 관계없이 적용 가능한 모델이며, 또한 기존 방식과 함께 사용할 수 있는 장점도 있다.

의미 기반의 질의 분석 및 확장 (Question Analysis and Expansion based on Semantics)

  • 신승은;박희근;서영훈
    • 한국콘텐츠학회논문지
    • /
    • 제7권7호
    • /
    • pp.50-59
    • /
    • 2007
  • 본 논문에서는 효율적인 정보검색을 위한 의미 기반의 질의 분석 및 확장을 제안한다. 기존의 정보검색 시스템들은 사용자 질의로 자연언어 질의를 허용하고 있지만 단순히 명사 단어의 색인어를 사용자 질의로부터 추출하여 정보검색에 활용하기 때문에 사용자의 질의 의도를 반영한 정보검색을 하지 못한다. 이러한 문제점을 해결하기 위해서 의미 기반 질의 분석 및 확장은 사용자의 질의를 의미적으로 분석하여, 질의유형을 결정하고 의미 자질들을 추출한다. 추출된 의미 자질들과 정답을 표현하기 위해 사용되는 구문구조를 이용하여 사용자 질의를 확장한다. 또한 확장된 질의를 이용하여 정답을 포함하는 관련문서들을 정보검색 결과의 상위에 랭크시킬 수 있는 방법을 제시한다. 비교적 짧지만 사용자의 질의 의도를 충분히 표현하고 있는 자연언어 질의에 대한 의미 기반의 질의 분석 및 확장을 통해 정보검색의 정확률을 향상시킬 수 있음을 보였다.

질의응답 커뮤니티에서 문서 간 이독성 비교 (Comparison of Readability between Documents in the Community Question-Answering)

  • 문길성
    • 한국콘텐츠학회논문지
    • /
    • 제20권10호
    • /
    • pp.25-34
    • /
    • 2020
  • 커뮤니티 질의응답 서비스는 다양한 목적으로 활용되고 있다. 질의응답 문서에서 정보의 품질은 질문의 명확성과 답변 내용의 적절성으로 결정되며 문서의 읽기 쉬운 정도를 나타내는 이독성(readability)은 문서가 가지고 있는 정보의 품질을 평가하기 위한 주요 요소이다. 본 연구의 목적은 국내의 CQA 사이트에서 제공되는 문서의 품질을 측정하는 것이다. 이를 위하여 네이버 지식iN의 '국민 신문고' 커뮤니티의 문서에서 사용된 어휘 수준별 사용 빈도를 비교하고, 작성 기관별 문서의 이독성 지수를 측정하였다. 이독성 지수의 측정은 어휘 수준과 문장 길이를 바탕으로 계산되는 Dale-Chall 공식을 사용하였다. 분석 결과, 답변에서 사용된 어휘는 질문에서 사용된 어휘보다 더 어려운 수준이고 문장 길이도 더 길어서 이독성이 더 낮은 것으로 나타났다. 또한, 질의응답간 이독성의 차이는 작성 기관별로도 차이가 있음을 파악할 수 있었다. 본 연구의 결과는 상담업무에 반영할 수 있는 유용한 정보를 도출하여 온라인상의 민원상담 개선에 활용할 수 있으며, 이독성 지수에 기반하여 문서 수준의 정량적 분석을 시도함으로써 텍스트 마이닝의 주제를 확장할 수 있을 것으로 기대한다.

Q&A 문서의 검색 결과 요약을 활용한 질의응답 시스템 (Question and Answering System through Search Result Summarization of Q&A Documents)

  • 유동현;이현아
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권4호
    • /
    • pp.149-154
    • /
    • 2014
  • 지식iN과 같은 사용자 참여 질의응답 커뮤니티에서 원하는 질문에 대한 답을 찾기 위해서는 검색 결과로 제공되는 다양한 문서를 일일이 확인하여 판단하는 과정이 필요하다. 만일 사용자가 원하는 답변을 자동으로 정제하여 제시할 수 있다면, 질의응답의 사용성이 크게 향상될 수 있다. 본 논문에서는 질의응답 데이터 분석을 통해 사용자의 질문의 유형을 단어, 목록, 도표, 글의 4가지 유형으로 분류하고, 문서 내 통계적 특성을 활용하여 각 분류별 답변을 자동으로 제시하기 위한 방식을 제안한다. 단어, 목록, 글 유형은 질의어에 대해 검색된 질문을 군집화하고, 군집 내 빈도와 질의어에 대한 근접도, 답변 신뢰도 등으로 계산된 답변 내 어휘의 적합도를 활용하여 요약한 답변을 사용자에게 제시한다. 도표형은 답변들에서 사용자의 의견 정보를 추출하여 의견 통계를 도표로 제시한다.