Browse > Article
http://dx.doi.org/10.5392/JKCA.2020.20.10.025

Comparison of Readability between Documents in the Community Question-Answering  

Mun, Gil-Seong (국민연금공단 정보전략실)
Publication Information
Abstract
Community question and answering service is one of the main sources of information and knowledge in the Web. The quality of information in question and answer documents is determined by the clarity of the question and the relevance of the answers, and the readability of a document is a key factor for evaluating the quality. This study is to measure the quality of documents used in community question and answering service. For this purpose, we compare the frequency of occurrence by vocabulary level used in community documents and measure the readability index of documents by institution of author. To measure the readability index, we used the Dale-Chall formula which is calculated by vocabulary level and sentence length. The results show that the vocabulary used in the answers is more difficult than in the questions and the sentence length is longer. The gap in readability between questions and answers is also found by writing institution. The results of this study can be used as basic data for improving online counseling services.
Keywords
Community Question-Answering; Readability; Readability Formula; Text Mining;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 고승연, "이독성 공식 개발을 위한 어휘 목록과 문법항목의 기대 요인 선정," 한국어문화교육, 제11권, 제2호, pp.1-24, 2018.
2 W. H. DuBay, The principles of readability, Impact Information, 2004.
3 S. Zhou, H. Jeong, and P. A. Green, "How consistent are the best-known readability equations in estimating the readability of design standards?," IEEE Transactions on Professional Communication, Vol.60, No.1, pp.97-111, 2017.   DOI
4 윤은정, 박윤배, "과학용어에 대한 '포털 사전', '표준국어대사전', '과학교과서' 설명의 비교 분석," 한국과학교육학회지, 제37권, 제1호, pp.1-8, 2017.   DOI
5 박정진, "이독성을 활용한 한국어 읽기 자료의 수준설정 가능성 탐색," 현대사회와 다문화, 제8권, 제2호, pp.1-22, 2018.
6 한송화, 한국어 교육 어휘 내용 개발(4단계), 국립국어원, 2015.
7 http://kkma.snu.ac.kr, 2019.10.21.
8 정대영, "소설 텍스트의 문장 복잡도 연구 - 자동화된 프로그램을 활용하여 -," 문학교육학, 제48호, pp.236-292, 2015.
9 L. T. Le, C. Shah, and E. Choi, "Evaluating the quality of educational answers in community question-answering," In Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries, pp.129-138, 2016.
10 https://kin.naver.com/people/partner/, 2019.10.06.
11 E. Agichtein, Y. Liu, and J. Bian, "Modeling information-seeker satisfaction in community question answering," ACM Transactions on Knowledge Discovery from Data (TKDD), Vol.3, No.2, Article No.10, 2009.
12 G. Burel, P. Mulholland, Y. He, and H. Alani, "Predicting answering behaviour in online question answering communities," In Proceedings of the 26th ACM Conference on Hypertext and Social Media, pp.201-210, 2015.
13 H. Fu and S. Oh, "Quality assessment of answers with user-identified criteria and data-driven features in social Q&A," Information Processing and Management, Vol.56, No.1, pp.14-28, 2019.   DOI
14 J. Trienes and K. Balog, "Identifying Unclear Questions in Community Question Answering Websites," In European Conference on Information Retrieerence on Information Retrieval, pp.276-289, 2019.
15 https://krdict.korean.go.kr, 2020.01.08.
16 최수환, "토픽 모델링을 이용한 사운드스케이프 연구 주제어 분석," 한국콘텐츠학회논문지, 제19권, 제7호, pp.427-435, 2019.   DOI
17 이재은, 채충일, "기업근로자 경력성공 인식의 다차원성과 차이: 토픽모델링의 적용," 한국콘텐츠학회논문지, 제19권, 제6호, pp.58-71, 2019.   DOI
18 최정균, 진서훈, 최종후, "텍스트 마이닝 기법을 이용한 언론사별 보도 변화 양상 탐구," J. of the Korean Data Analysis Society, 제19권, 제5호, pp.2509-2522, 2017.   DOI
19 C. Shah and J. Pomerantz, "Evaluating and predicting answer quality in community QA," In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval, pp.411-418, 2010.
20 K. Collins-Thompson, "Computational assessment of text readability: A survey of current and future research," J. of Applied Linguistics, Vol.165, No.2, pp.97-135, 2014.
21 조용구, "글의 수준을 평가하는 국어 이독성 공식," 독서연구, 제41권, 제3호, pp.73-92, 2016.