• Title/Summary/Keyword: Question and answer documents

Search Result 37, Processing Time 0.024 seconds

Experimental Analysis of Correct Answer Characteristics in Question Answering Systems (질의응답시스템에서 정답 특징에 관한 실험적 분석)

  • Han, Kyoung-Soo
    • Journal of Digital Contents Society
    • /
    • v.19 no.5
    • /
    • pp.927-933
    • /
    • 2018
  • One of the factors that have the greatest influence on the error of the question answering system that finds and provides answers to natural language questions is the step of searching for documents or passages that contain correct answers. In order to improve the retrieval performance, it is necessary to understand the characteristics of documents and passages containing correct answers. This paper experimentally analyzes how many question words appear in the correct answer documents, how the location of the question word is distributed, and how the topic of the question and the correct answer document are similar using the corpus composed of the question, the documents with correct answer, and the documents without correct answer. This study explains the causes of previous search research results for question answer system and discusses the necessary elements of effective search step.

Answer Snippet Retrieval for Question Answering of Medical Documents (의학문서 질의응답을 위한 정답 스닛핏 검색)

  • Lee, Hyeon-gu;Kim, Minkyoung;Kim, Harksoo
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.927-932
    • /
    • 2016
  • With the explosive increase in the number of online medical documents, the demand for question-answering systems is increasing. Recently, question-answering models based on machine learning have shown high performances in various domains. However, many question-answering models within the medical domain are still based on information retrieval techniques because of sparseness of training data. Based on various information retrieval techniques, we propose an answer snippet retrieval model for question-answering systems of medical documents. The proposed model first searches candidate answer sentences from medical documents using a cluster-based retrieval technique. Then, it generates reliable answer snippets using a re-ranking model of the candidate answer sentences based on various sentence retrieval techniques. In the experiments with BioASQ 4b, the proposed model showed better performances (MAP of 0.0604) than the previous models.

Evaluation of the documents from the Web-based Question and Answer Service (지식 검색 서비스 개선을 위한 문서의 적합도 및 신뢰도 분석)

  • Park So-Yeon;Lee Joon-Ho;Jeon Ji-Woon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.40 no.2
    • /
    • pp.299-314
    • /
    • 2006
  • This study suggests evaluation criteria for the web-based question-answer databases provided by major Korean search portals. In particular, this study suggests evaluation criteria for the relevance of question titles, entire questions, and answer's. The evaluation criteria for the qualify of answers are also developed. Based on these criteria. evaluation of documents from Naver Knowledge-in are performed. The results of this study can be implemented to the development of test collection of question-answer databases. The implications for system designers and web content providers are discussed.

Query Reconstruction for Searching QA Documents by Utilizing Structural Components (질의응답문서 검색에서 문서구조를 이용한 질의재생성에 관한 연구)

  • Choi, Sang-Hee;Seo, Eun-Gyoung
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.2
    • /
    • pp.229-243
    • /
    • 2006
  • This study aims to suggest an effective way to enhance question-answer(QA) document retrieval performance by reconstructing queries based on the structural features in the QA documents. QA documents are a structured document which consists of three components : question from a questioner, short description on the question, answers chosen by the questioner. The study proposes the methods to reconstruct a new query using by two major structural parts, question and answer, and examines which component of a QA document could contribute to improve query performance. The major finding in this study is that to use answer document set is the most effective for reconstructing a new query. That is, queries reconstructed based on terms appeared on the answer document set provide the most relevant search results with reducing redundancy of retrieved documents.

Answer Extraction of Concept based Question-Answering System (개념 기반 질의-응답 시스템에서의 정답 추출)

  • Ahn Young-Min;Oh Su-Hyun;Kang Yu-Hwan;Seo Young-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.448-451
    • /
    • 2005
  • In this paper, we describe a method of answer extraction on a concept-based question-answering system. The concept-based question answering system is a system which extract answer using concept information. we have researched the method of answer extraction using concepts which analyzed and extracted through question analysing with answer extracting rules. We analyzed documents including answers and then composed answer extracting rules. Rules consist of concept and syntactic information, we generated candidates of answer through the rules and then chose answer.

  • PDF

Concept-based Question Analysis for Accurate Answer Extraction (정확한 해답 추출을 위한 개념 기반의 질의 분석)

  • Shin, Seung-Eun;Kang, Yu-Hwan;Ahn, Young-Min;Park, Hee-Guen;Seo, Young-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • This paper describes a concept-based question analysis to analyze concept which is more important than keyword for the accurate answer extraction. Our idea is that we can extract correct answers from various paragraphs with different structures when we use well-defined concepts because concepts occurred in questions of same answer type are similar. That is, we will analyze the syntactic and semantic role of each word or phrase in a question in order to extract more relevant documents and more accurate answer in them. For each answer type, we define a concept frame which is composed of concepts commonly occurred in that type of questions and analyze user's question by filling a concept frame with a word or phrase. Empirical results show that our concept-based question analysis can extract more accurate answer than any other conventional approach. Also, concept-based approach has additional merits that it is language universal model, and can be combined with arbitrary conventional approaches.

Question Analysis and Expansion based on Semantics (의미 기반의 질의 분석 및 확장)

  • Shin, Seung-Eun;Park, Hee-Guen;Seo, Young-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.7
    • /
    • pp.50-59
    • /
    • 2007
  • This paper describes a question analysis and expansion based on semantics for on efficient information retrieval. Results of all information retrieval systems include many non-relevant documents because the index cannot naturally reflect the contents of documents and because queries used in information retrieval systems cannot represent enough information in user's question. To solve this problem, we analyze user's question semantically, determine the answer type, and extract semantic features. And then we expand user's question using them and syntactic structures which are used to represent the answer. Our similarity is to rank documents which include expanded queries in high position. Especially, we found that an efficient document retrieval is possible by a question analysis and expansion based on semantics on natural language questions which are comparatively short but fully expressing the information demand of users.

Comparison of Readability between Documents in the Community Question-Answering (질의응답 커뮤니티에서 문서 간 이독성 비교)

  • Mun, Gil-Seong
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.25-34
    • /
    • 2020
  • Community question and answering service is one of the main sources of information and knowledge in the Web. The quality of information in question and answer documents is determined by the clarity of the question and the relevance of the answers, and the readability of a document is a key factor for evaluating the quality. This study is to measure the quality of documents used in community question and answering service. For this purpose, we compare the frequency of occurrence by vocabulary level used in community documents and measure the readability index of documents by institution of author. To measure the readability index, we used the Dale-Chall formula which is calculated by vocabulary level and sentence length. The results show that the vocabulary used in the answers is more difficult than in the questions and the sentence length is longer. The gap in readability between questions and answers is also found by writing institution. The results of this study can be used as basic data for improving online counseling services.

Question and Answering System through Search Result Summarization of Q&A Documents (Q&A 문서의 검색 결과 요약을 활용한 질의응답 시스템)

  • Yoo, Dong Hyun;Lee, Hyun Ah
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.4
    • /
    • pp.149-154
    • /
    • 2014
  • A user should pick up relevant answers by himself from various search results when using user participation question answering community like Knowledge-iN. If refined answers are automatically provided, usability of question answering community must be improved. This paper divides questions in Q&A documents into 4 types(word, list, graph and text), then proposes summarizing methods for each question type using document statistics. Summarized answers for word, list and text type are obtained by question clustering and calculating scores for words using frequency, proximity and confidence of answers. Answers for graph type is shown by extracting user opinion from answers.